Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med ; 60: 66-75, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31000088

RESUMEN

PURPOSE: Breast cancer is the most frequent cancer in women. Early and accurate detection of the disease is a major factor in patient survival. To this end, phase-contrast imaging has gained significant interest in recent years. The aim of this work was to validate the physics models of a Geant4 mammography imaging simulation (in the context of the XPulse project) by comparing to EGSnrc results. METHODS: We used three Geant4 electromagnetic physics lists of the version 10.4 of the toolkit: Standard, Livermore and Penelope. We calculated energy distributions in homogeneous and inhomogeneous phantoms and breast doses in DICOM images. The simulations used photon beams of energies 20-100 keV. The Geant4 calculations were compared with EGSnrc/DOSXYZnrc simulations. RESULTS: We found a very good agreement between the Standard Electromagnetic option 4 and Livermore Physics Lists (within 1% for all beam energies). Larger differences were found between Standard Electromagnetic option 4 and Penelope Physics Lists (about 4%). The agreement of longitudinal energy distributions between Geant4 Standard Electromagnetic option 4 and EGSnrc was good in water and light biological materials, but important discrepancies were found in heavy elements. We confirmed with both codes that dose to the breast is minimal at beam energy around 60 keV. CONCLUSIONS: Overall, we found good agreement between the option 4 of the Standard Electromagnetic physics list and Livermore physics lists of Geant4, as well as EGSnrc for materials relevant to mammography screening. Further investigations are needed for the case of heavier materials.


Asunto(s)
Simulación por Computador , Mamografía/métodos , Mama/diagnóstico por imagen , Mama/efectos de la radiación , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Método de Montecarlo , Fantasmas de Imagen , Fotones , Dosis de Radiación , Factores de Tiempo , Agua
2.
Phys Rev Lett ; 119(7): 075002, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949680

RESUMEN

A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10^{16} -10^{17} W/cm^{2}. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray free-electron laser pulses.

3.
Rev Sci Instrum ; 87(11): 11E524, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910564

RESUMEN

We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

4.
Nat Commun ; 7: 11713, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27210741

RESUMEN

The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. Here we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffected by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. The results have implications for the standard approaches to the equation of state calculations.

5.
Nat Commun ; 7: 10970, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26972122

RESUMEN

The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.


Asunto(s)
Diamante/química , Grafito/química , Cristalización , Planeta Tierra , Dureza , Meteoroides , Conceptos Meteorológicos , Transición de Fase , Presión , Difracción de Rayos X
6.
Appl Opt ; 54(15): 4745-9, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-26192510

RESUMEN

We report on the shot-to-shot stability of intensity and spatial phase of high-harmonic generation (HHG). The intensity stability is measured for each high-harmonic (HH) order with a spectrometer. Additionally, the spatial phase is measured with an XUV wavefront sensor for a single HH order measured in a single shot, which according to our knowledge was not reported before with a Hartmann wavefront sensor. Furthermore, we compare the single-shot measurement of the spatial phase with time-integrated measurements and we show that the XUV wavefront sensor is a useful tool to simultaneously optimize the spatial phase and intensity of HHG within the available HHG parameter range used in this study.

7.
J Synchrotron Radiat ; 22(3): 729-35, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931090

RESUMEN

Laser pump-X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shot X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated.

8.
Phys Rev Lett ; 114(1): 015003, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615475

RESUMEN

High-intensity x-ray pulses from an x-ray free-electron laser are used to heat and probe a solid-density aluminum sample. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, in good agreement with atomic-kinetics simulations.

9.
Rev Sci Instrum ; 85(11): 11E616, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430362

RESUMEN

We have developed a new experimental platform at the Linac Coherent Light Source (LCLS) which combines simultaneous angularly and spectrally resolved x-ray scattering measurements. This technique offers a new insights on the structural and thermodynamic properties of warm dense matter. The < 50 fs temporal duration of the x-ray pulse provides near instantaneous snapshots of the dynamics of the compression. We present a proof of principle experiment for this platform to characterize a shock-compressed plastic foil. We observe the disappearance of the plastic semi-crystal structure and the formation of a compressed liquid ion-ion correlation peak. The plasma parameters of shock-compressed plastic can be measured as well, but requires an averaging over a few tens of shots.

10.
Rev Sci Instrum ; 85(11): 11E702, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430365

RESUMEN

Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

11.
Opt Express ; 21(9): 11441-7, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23670000

RESUMEN

We present single shot nanoscale imaging using a table-top femtosecond soft X-ray laser harmonic source at a wavelength of 32 nm. We show that the phase retrieval process in coherent diffractive imaging critically depends on beam quality. Coherence and image fidelity are measured from single-shot coherent diffraction patterns of isolated nano-patterned slits. Impact of flux, wave front and coherence of the soft X-ray beam on the phase retrieval process and the image quality are discussed. After beam improvements, a final image reconstruction is presented with a spatial resolution of 78 nm (half period) in a single 20 fs laser harmonic shot.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Nanopartículas/ultraestructura , Difracción de Rayos X/métodos
12.
J Phys Condens Matter ; 22(6): 065404, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21389369

RESUMEN

In situ x-ray diffraction has been used to measure the shear strain (and thus strength) of single crystal copper shocked to 100 GPa pressures at strain rates over two orders of magnitude higher than those achieved previously. For shocks in the [001] direction there is a significant associated shear strain, while shocks in the [111] direction give negligible shear strain. We infer, using molecular dynamics simulations and VISAR (standing for 'velocity interferometer system for any reflector') measurements, that the strength of the material increases dramatically (to approximately 1 GPa) for these extreme strain rates.

13.
Phys Rev Lett ; 102(16): 165004, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19518720

RESUMEN

We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 2): 056407, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20365083

RESUMEN

We present the application of short-pulse laser-driven hard x rays (>40 keV) for the direct density measurement of iron compressed by a laser-driven shock. By using an on-shot calibration of the spectral absorption, we are able to obtain line densities with 5%-10% precision, although the x-ray source is not monochromatic. We also discuss possibilities for increasing the precision, which would be an improvement for equation of state measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...