Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Int ; 180: 108242, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816267

RESUMEN

Urban wastewater treatment plants harbor a large collection of antibiotic resistant enteric bacteria. It is therefore reasonable to hypothesize that workers at such plants would possess a more diverse set of resistant enteric bacteria, compared to the general population. To address this hypothesis, we have compared the fecal microbiome and resistome of 87 workers at wastewater treatment plants (WWTPs) from Romania and the Netherlands to those of 87 control individuals, using shotgun metagenomics. Controlling for potential confounders, neither the total antibiotic resistance gene (ARG) abundance, nor the overall bacterial composition were significantly different between the two groups. If anything, the ARG richness was slightly lower in WWTP workers, and in a stratified analysis the total ARG abundance was significantly lower in Dutch workers compared to Dutch control participants. We identified country of residence, together with recent antibiotic intake in the Dutch population, as the largest contributing factors to the total abundance of ARGs. A striking side-finding was that sex was associated with carriage of disinfectant resistance genes, with women in both Romania and the Netherlands having significantly higher abundance compared to men. A follow up investigation including an additional 313 publicly available samples from healthy individuals from three additional countries showed that the difference was significant for three genes conferring resistance to chemicals commonly used in cosmetics and cleaning products. We therefore hypothesize that the use of cosmetics and, possibly, cleaning products leads to higher abundance of disinfectant resistance genes in the microbiome of the users. Altogether, this study shows that working at a WWTP does not lead to a higher abundance or diversity of ARGs and no large shifts in the overall gut microbial composition in comparison to participants not working at a WWTP. Instead, other factors such as country of residence, recent antibiotic intake and sex seem to play a larger role.


Asunto(s)
Desinfectantes , Microbiota , Purificación del Agua , Humanos , Femenino , Aguas Residuales , Genes Bacterianos , Bacterias/genética , Antibacterianos/farmacología , Antibacterianos/análisis , Microbiota/genética
2.
Microorganisms ; 11(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37894097

RESUMEN

This study aims to demonstrate the effectiveness of silver nanoparticles (Ag NPs) on multidrug-resistant (MDR) Acinetobacter baumannii (AB) strains isolated from the clinical and aquatic environment. Three types of Ag NPs were investigated for their antimicrobial, antibiofilm, and antivirulence properties on a total number of 132 AB strains isolated in the same temporal sequence from intra-hospital infections (IHIs), wastewater (WW), and surface water (SW) samples between 2019 and 2022 from different Romanian locations and characterized at the phenotypic and genotypic levels. The comparative analysis of the antimicrobial resistance (AR) profiles according to the isolation source and the geographical location demonstrated a decrease in MDR level in AB recovered from WW samples in 2022 from north-eastern/central/southern regions (N-E/C-W/analyzed strains S): 87.5/60/32.5%. The AB strains were lecithinase, caseinase, amylase, and lipase producers, had variable biofilm formation ability, and belonged to six genotypes associated with the presence of different virulence genes (ompA, csuE, bap, and bfmS). The Ag NPs synthesized with the solvothermal method exhibited an inhibitory effect on microbial growth, the adherence capacity to the inert substratum, and on the production of soluble virulence factors. We report here the first description of a powerful antibacterial agent against MDR AB strains circulating between hospitals and anthropically polluted water in Romania.

3.
Front Microbiol ; 14: 1193907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293232

RESUMEN

Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.

4.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175597

RESUMEN

Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacología , Rumanía/epidemiología , Farmacorresistencia Bacteriana , Farmacorresistencia Bacteriana Múltiple/genética , Bacterias Gramnegativas/genética , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Acinetobacter baumannii/genética
5.
Pathogens ; 12(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111495

RESUMEN

A current major healthcare problem is represented by antibiotic resistance, mainly due to multidrug resistant (MDR) Gram negative bacilli (GNB), because of their extended spread both in hospital facilities and in the community's environment. The aim of this study was to investigate the virulence traits of Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa MDR, XDR, and PDR strains isolated from various hospitalized patients. These GNB strains were investigated for the presence of soluble virulence factors (VF), such as hemolysins, lecithinase, amylase, lipase, caseinase, gelatinase, and esculin hydrolysis, as well as for the presence of virulence genes encoding for VF involved in adherence (TC, fimH, and fimA), biofilm formation (algD, ecpRAB, mrkA, mrkD, ompA, and epsA), tissue destruction (plcH and plcN), and in toxin production (cnfI, hlyA, hlyD, and exo complex). All P. aeruginosa strains produced hemolysins; 90% produced lecithinase; and 80% harbored algD, plcH, and plcN genes. The esculin hydrolysis was detected in 96.1% of the K. pneumoniae strains, whereas 86% of them were positive for the mrkA gene. All of the A. baumannii strains produced lecithinase and 80% presented the ompA gene. A significant association was found between the number of VF and the XDR strains, regardless of the isolation sources. This study opens new research perspectives related to bacterial fitness and pathogenicity, and it provides new insights regarding the connection between biofilm formation, other virulence factors, and antibiotic resistance.

6.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901750

RESUMEN

Due to the increase in the life span and mobility at older ages, the number of implanted prosthetic joints is constantly increasing. However, the number of periprosthetic joint infections (PJIs), one of the most severe complications after total joint arthroplasty, also shows an increasing trend. PJI has an incidence of 1-2% in the case of primary arthroplasties and up to 4% in the case of revision operations. The development of efficient protocols for managing periprosthetic infections can lead to the establishment of preventive measures and effective diagnostic methods based on the results obtained after the laboratory tests. In this review, we will briefly present the current methods used in PJI diagnosis and the current and emerging synovial biomarkers used for the prognosis, prophylaxis, and early diagnosis of periprosthetic infections. We will discuss treatment failure that may result from patient factors, microbiological factors, or factors related to errors during diagnosis.


Asunto(s)
Artritis Infecciosa , Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Infecciones Relacionadas con Prótesis , Humanos , Infecciones Relacionadas con Prótesis/etiología , Líquido Sinovial , Biomarcadores , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Cadera/efectos adversos , Artritis Infecciosa/diagnóstico
7.
Biomedicines ; 11(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672688

RESUMEN

The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic has advanced our understanding of the host-microbiome-virus interplay. Several studies in various geographical regions report that SARS-CoV-2 infection disrupts the intestinal microbiota, allowing pathogenic bacteria such as Enterobacteriaceae to thrive, and triggering more severe disease outcomes. Here, we profile the microbiota of 30 individuals, 15 healthy controls and 15 type 2 diabetes (T2D) patients, before and after coronavirus disease 2019 (COVID-19). Despite similar viral loads in both patients and controls, SARS-CoV-2 infection led to exacerbated microbiome changes in T2D patients, characterized by higher levels of Enterobacteriaceae, loss of butyrate producers and an enrichment in fungi such as Candida spp. and Aspergillus spp. Several members of the microbiota were associated with more severe clinical and inflammatory (IL-8 and IL-17) parameters. Future studies to delineate the connection between cytokine release and microbiota disturbances will enhance our understanding of whether these microbial shifts directly impact the cytokine storm in COVID-19 patients or whether they are consecutive to the critical disease.

8.
Front Microbiol ; 14: 1296447, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249451

RESUMEN

The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.

9.
Antimicrob Resist Infect Control ; 11(1): 115, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104761

RESUMEN

BACKGROUND: Romania is one of the European countries reporting very high antimicrobial resistance (AMR) rates and consumption of antimicrobials. We aimed to characterize the AMR profiles and clonality of 304 multi-drug resistant (MDR) Acinetobacter baumannii (Ab) and Pseudomonas aeruginosa (Pa) strains isolated during two consecutive years (2018 and 2019) from hospital settings, hospital collecting sewage tanks and the receiving wastewater treatment plants (WWTPs) located in the main geographical regions of Romania. METHODS: The strains were isolated on chromogenic media and identified by MALDI-TOF-MS. Antibiotic susceptibility testing and confirmation of ESBL- and CP- producing phenotypes and genotypes were performed. The genetic characterization also included horizontal gene transfer experiments, whole-genome sequencing (WGS), assembling, annotation and characterization. RESULTS: Both clinical and aquatic isolates exhibited high MDR rates, especially the Ab strains isolated from nosocomial infections and hospital effluents. The phenotypic resistance profiles and MDR rates have largely varied by sampling point and geographic location. The highest MDR rates in the aquatic isolates were recorded in Galați WWTP, followed by Bucharest. The Ab strains harbored mostly blaOXA-23, blaOXA-24, blaSHV, blaTEM and blaGES, while Pa strains blaIMP, blaVIM, blaNDM, blaVEB, blaGES and blaTEM, with high variations depending on the geographical zone and the sampling point. The WGS analysis revealed the presence of antibiotic resistance genes (ARGs) to other antibiotic classes, such as aminoglycosides, tetracyclines, sulphonamides, fosfomycin, phenicols, trimethoprim-sulfamethoxazole as well as class 1 integrons. The molecular analyses highlighted: (i) The presence of epidemic clones such as ST2 for Ab and ST233 and ST357 for Pa; (ii) The relatedness between clinical and hospital wastewater strains and (iii) The possible dissemination of clinical Ab belonging to ST2 (also proved in the conjugation assays for blaOXA-23 or blaOXA-72 genes), ST79 and ST492 and of Pa strains belonging to ST357, ST640 and ST621 in the wastewaters. CONCLUSION: Our study reveals the presence of CP-producing Ab and Pa in all sampling points and the clonal dissemination of clinical Ab ST2 strains in the wastewaters. The prevalent clones were correlated with the presence of class 1 integrons, suggesting that these isolates could be a significant reservoir of ARGs, being able to persist in the environment.


Asunto(s)
Acinetobacter baumannii , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Hospitales , Proteína 1 Similar al Receptor de Interleucina-1 , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética , Rumanía/epidemiología , Aguas Residuales/microbiología , Monitoreo Epidemiológico Basado en Aguas Residuales , beta-Lactamasas/genética
10.
Sci Rep ; 11(1): 13288, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168184

RESUMEN

Acinetobacter baumannii has emerged worldwide as a dominant pathogen in a broad range of severe infections, raising an acute need for efficient antibacterials. This is the first report on the resistome and virulome of 33 extended drug-resistant and carbapenem-resistant A. baumannii (XDR CRAB) strains isolated from hospitalized and ambulatory patients in Bucharest, Romania. A total of 33 isolates were collected and analyzed using phenotypic antibiotic susceptibility and conjugation assays, PCR, whole-genome sequencing (WGS), pulsed-field gel electrophoresis (PFGE) and MultiLocus Sequence Typing (MLST). All isolates were extensively drug-resistant (XDR), being susceptible only to colistin. The carbapenem resistance was attributed by PCR mainly to blaOXA-24 and blaOXA-23 genes. PFGE followed by MLST analysis demonstrated the presence of nine pulsotypes and six sequence types. WGS of seven XDR CRAB isolates from healthcare-associated infections demonstrated the high diversity of resistance genes repertoire, as well as of mobile genetic elements, carrying ARGs for aminoglycosides, sulphonamides and macrolides. Our data will facilitate the understanding of resistance, virulence and transmission features of XDR AB isolates from Romanian patients and might be able to contribute to the implementation of appropriate infection control measures and to develop new molecules with innovative mechanisms of action, able to fight effectively against these bugs, for limiting the spread and decreasing the infection rate and mortality.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter baumannii/patogenicidad , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Electroforesis en Gel de Campo Pulsado , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Reacción en Cadena de la Polimerasa , Rumanía/epidemiología , Virulencia , Secuenciación Completa del Genoma
11.
Microorganisms ; 9(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807464

RESUMEN

Carbapenem-resistant Enterobacterales (CRE) are included in the list of the most threatening antibiotic resistance microorganisms, being responsible for often insurmountable therapeutic issues, especially in hospitalized patients and immunocompromised individuals and patients in intensive care units. The enzymatic resistance to carbapenems is encoded by different ß-lactamases belonging to A, B or D Ambler class. Besides compromising the activity of last-resort antibiotics, CRE have spread from the clinical to the environmental sectors, in all geographic regions. The purpose of this review is to present present and future perspectives on CRE-associated infections treatment.

12.
Pharmaceutics ; 13(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540560

RESUMEN

Decades of antibiotic misuse in clinical settings, animal feed, and within the food industry have led to a concerning rise in antibiotic-resistant bacteria. Every year, antimicrobial-resistant infections cause 700,000 deaths, with 10 million casualties expected by 2050, if this trend continues. Hence, innovative solutions are imperative to curb antibiotic resistance. Bacteria produce a potent arsenal of drugs with remarkable diversity that are all distinct from those of current antibiotics. Bacteriocins are potent small antimicrobial peptides synthetized by certain bacteria that may be appointed as alternatives to traditional antibiotics. These molecules are strategically employed by commensals, mostly Firmicutes, to colonize and persist in the human gut. Bacteriocins form channels in the target cell membrane, leading to leakage of low-molecular-weight, causing the disruption of the proton motive force. The objective of this review was to list and discuss the potential of bacteriocins as antimicrobial therapeutics for infections produced mainly by resistant pathogens.

13.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198306

RESUMEN

Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, ß-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of ß-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop ß-lactamase inhibitors (BLIs) capable of restoring the activity of ß-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of ß-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , beta-Lactamasas/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , Animales , Bacteriófagos , Sistemas CRISPR-Cas , Carbapenémicos/farmacología , Enterobacter/efectos de los fármacos , Enterobacter/enzimología , Enterococcus/efectos de los fármacos , Enterococcus/enzimología , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Vacunación , Inhibidores de beta-Lactamasas/farmacología
14.
PLoS One ; 15(1): e0228079, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31999747

RESUMEN

We report on the genomic characterization of 47 multi-drug resistant, carbapenem resistant and ESBL-producing K. pneumoniae isolates from the influent (I) and effluent (E) of three wastewater treatment plants (WWTPs) and from Romanian hospital units which are discharging the wastewater in the sampled WWTPs. The K. pneumoniae whole genome sequences were analyzed for antibiotic resistance genes (ARGs), virulence genes and sequence types (STs) in order to compare their distribution in C, I and E samples. Both clinical and environmental samples harbored prevalent and widely distributed ESBL genes, i.e. blaSHV, blaOXA, blaTEM and blaCTX M. The most prevalent carbapenemase genes were blaNDM-1, blaOXA-48 and blaKPC-2. They were found in all types of isolates, while blaOXA-162, a rare blaOXA-48 variant, was found exclusively in water samples. A higher diversity of carbapenemases genes was seen in wastewater isolates. The aminoglycoside modifying enzymes (AME) genes found in all types of samples were aac(6'), ant(2'')Ia, aph(3'), aaD, aac(3) and aph(6). Quinolone resistance gene qnrS1 and the multi-drug resistance oqxA/B pump gene were found in all samples, while qnrD and qnrB were associated to aquatic isolates. The antiseptics resistance gene qacEdelta1 was found in all samples, while qacE was detected exclusively in the clinical ones. Trimethroprim-sulfamethoxazole (dfrA, sul1 and sul2), tetracyclines (tetA and tetD) and fosfomycin (fosA6, known to be located on a transpozon) resistance genes were found in all samples, while for choramphenicol and macrolides some ARGs were detected in all samples (catA1 and catB3 / mphA), while other (catA2, cmIA5 and aac(6')Ib / mphE and msrE) only in wastewater samples. The rifampin resistance genes arr2 and 3 (both carried by class I integrons) were detected only in water samples. The highly prevalent ARGs preferentially associating with aquatic versus clinical samples could ascribe potential markers for the aquatic (blaSHV-145, qacEdelta1, sul1, aadA1, aadA2) and clinical (blaOXA-1, blaSHV-106,blaTEM-150, aac(3)Iia, dfrA14, oqxA10; oqxB17,catB3, tetD) reservoirs of AR. Moreover, some ARGs (oqxA10; blaSHV-145; blaSHV-100, aac(6')Il, aph(3')VI, armA, arr2, cmlA5, blaCMY-4, mphE, msrE, oqxB13, blaOXA-10) showing decreased prevalence in influent versus effluent wastewater samples could be used as markers for the efficiency of the WWTPs in eliminating AR bacteria and ARGs. The highest number of virulence genes (75) was recorded for the I samples, while for E and C samples it was reduced to half. The most prevalent belong to three functional groups: adherence (fim genes), iron acquisition (ent, fep, fyu, irp and ybt genes) and the secretion system (omp genes). However, none of the genes associated with hypervirulent K. pneumoniae have been found. A total of 14 STs were identified. The most prevalent clones were ST101, ST219 in clinical samples and ST258, ST395 in aquatic isolates. These STs were also the most frequently associated with integrons. ST45 and ST485 were exclusively associated with I samples, ST11, ST35, ST364 with E and ST1564 with C samples. The less frequent ST17 and ST307 aquatic isolates harbored blaOXA-162, which was co-expressed in our strains with blaCTX-M-15 and blaOXA-1.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Hospitales , Klebsiella pneumoniae/genética , Aguas Residuales/microbiología , Purificación del Agua , Secuenciación Completa del Genoma , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Genes Bacterianos , Humanos , Integrones/genética , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Quinolonas/farmacología , Rumanía , Virulencia/genética , beta-Lactamas/metabolismo
15.
Front Microbiol ; 11: 610296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584574

RESUMEN

In this paper we describe the transmission of a multi-drug resistant Klebsiella pneumoniae ST101 clone from hospital to wastewater and its persistence after chlorine treatment. Water samples from influents and effluents of the sewage tank of an infectious diseases hospital and clinical strains collected from the intra-hospital infections, during a period of 10 days prior to wastewater sampling were analyzed. Antibiotic resistant K. pneumoniae strains from wastewaters were recovered on selective media. Based on antibiotic susceptibility profiles and PCR analyses of antibiotic resistance (AR) genetic background, as well as whole-genome sequencing (Illumina MiSeq) and subsequent bioinformatic analyses, 11 ST101 K. pneumoniae strains isolated from hospital wastewater influent, wastewater effluent and clinical sector were identified as clonally related. The SNP and core genome analyses pointed out that five strains were found to be closely related (with ≤18 SNPs and identical cgMLST profile). The strains belonging to this clone harbored multiple acquired AR genes [bla CTX-M- 15, bla OXA- 48, bla OXA- 1, bla SHV- 106, bla TEM- 150, aac(3)-IIa, aac(6')-Ib-cr, oqxA10, oqxB17, fosA, catB3, dfrA14, tet(D)] and chromosomal mutations involved in AR (ΔmgrB, ΔompK35, amino acid substitutions in GyrA Ser83Tyr, Asp87Asn, ParC Ser80Tyr). Twenty-nine virulence genes involved in iron acquisition, biofilm and pili formation, adherence, and the type six secretion system - T6SS-III were identified. Our study proves the transmission of MDR K. pneumoniae from hospital to the hospital effluent and its persistence after the chlorine treatment, raising the risk of surface water contamination and further dissemination to different components of the trophic chain, including humans.

16.
Biomed Res Int ; 2019: 5712371, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31236408

RESUMEN

BACKGROUND: Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) are among the most common infections worldwide, including Romania. To the best of our knowledge, this is the first study performed on a significant number of community-acquired (CA) UPEC strains isolated from Romanian outpatients, aiming to evaluate and establish potential correlations among the phylogenetic groups (PG), resistance profiles, and the virulence factors (VF) genes of the CA-UPEC isolates. MATERIALS/METHODS: The present study was performed on a total of 787 UPEC nonrepetitive isolates consecutively isolated during one month from outpatients with CA-UTIs, visiting one of the biggest laboratories in Bucharest, Romania, receiving patients from all over the country. The strains identification was performed by MALDI TOF and the susceptibility patterns were tested using Microscan according to CLSI guidelines. PCR assays were performed to detect the presence of different VFs (fimH gene encoding for type 1 fimbriae, afaBC for A fimbriae, sfaDE for S fimbriae, KpsMTII for capsule, hlyA for haemolysin A, hlyD for haemolysin D, and cnf-1 for tumor necrosis factor), the phylogenetic groups (PG) A, B1, B2, and D, and the extended spectrum beta-lactamases (ESBLs) genes. RESULTS: The 787 CA-UPEC strains were isolated predominantly from female patients (90.95%) of >30 years (~74%). The resistance rates were 47.52% for ampicillin, 41.16% for tetracycline, 24.39% for cotrimoxazole, 19.18% for amoxicillin-clavulanic acid, 15.50% for cefazolin, 14.99% for ciprofloxacin, and 14.86% for levofloxacin; 35.19% of the investigated strains were MDR and 9.03% ESBL producers (from which 42.25% were positive for blaCTX-M, 38.02% for blaTEM, and 19.71% for blaSHV). FimH was the most frequent virulence gene (93.90%) followed by hlyD (44.34%); afaBC (38.24%); KpsMTII (32.65%); sfaDE (23.88%); hlyA (12.45%); and cnf-1 (7.75%). The distribution of the analyzed UPEC strains in phylogenetic groups was different for non-MDR and MDR strains. Overall, 35% of the strains belonged to the phylogenetic group B2 (harboring the yjaA gene); 27% to group B1 (confirmed by the presence of the TspE4C2 fragment); 16% to group D; and 22% to group A. The CA-UPEC strains included in PG B1 and PG B2 proved to be the most virulent ones, the number of strains carrying multiple VFs (>3) being significantly larger as compared to strains belonging to PG A and PG D) (p<0,0001). The presence of one or two ESBL genes was significantly associated (p =0.0024) with PGs A and D. CONCLUSIONS: Our findings showed that the community UPEC strains circulating in Bucharest, Romania, belong predominantly to group B2 and >90% harbored the fimH gene. High MDR resistance rates were observed, as well as extended VF profiles, highlighting the importance of this type of studies for improving the epidemiological surveillance and the therapeutic or prophylactic management of the respective infections, in the context of antibiotic resistance emergence.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Filogenia , Infecciones Urinarias/genética , Escherichia coli Uropatógena/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Niño , Preescolar , Ciprofloxacina/efectos adversos , Ciprofloxacina/uso terapéutico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios , Rumanía/epidemiología , Infecciones Urinarias/epidemiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/patogenicidad , Factores de Virulencia/genética , Adulto Joven , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...