Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(20): 8563-8575, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38682235

RESUMEN

The Oxygen Evolution Reaction (OER) is crucial in various processes such as hydrogen production via water splitting. Several electrocatalysts, including metal oxides, have been evaluated to enhance the reaction efficiency. Zeolitic Imidazolate Framework-67 (ZIF-67) has been employed as a precursor to produce Co3O4, showing high OER activity. Additionally, the formation of composites with carbon-based materials improves the activity of these materials. Thus, this work focuses on synthesizing ZIF-67 and commercial activated carbon (AC) composites, which were used as precursors to obtain Co3O4/C electrocatalysts by calculating ZIF-67/CX (X = 10, 30, and 50, the mass percentage of AC). The obtained materials were thoroughly characterized by employing X-ray powder diffraction (XRD), confirming the cobalt oxide structure with a sphere-like morphology as observed in the TEM images. The presence of oxygen vacancies was confirmed by infrared spectroscopy and EPR measurements. The electrocatalytic performance in the OER was investigated by linear sweep voltammetry (LSV), which revealed an overpotential of 325 mV at 10 mA cm-2 and a Tafel slope value of 65.32 mV dec-1 for Co3O4/C10, superior in activity to several previously reported studies in the literature and electrochemical stability of up to 8 hours. The reduced value of charge transfer resistance, high double-layer capacitance, and the presence of Co3+ ions justify the superior performance of the Co3O4/C10 electrocatalyst.

2.
Materials (Basel) ; 17(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38541384

RESUMEN

Hyaluronic acid (HA) has attracted much attention in tumor-targeted drug delivery due to its ability to specifically bind to the CD44 cellular receptor, which is widely expressed on cancer cells. We present HA-capped magnetic nanoparticles (HA-MNPs) obtained via the co-precipitation method, followed by the electrostatic adsorption of HA onto the nanoparticles' surfaces. A theoretical study carried out with the PM3 method evidenced a dipole moment of 3.34 D and negatively charged atom groups able to participate in interactions with nanoparticle surface cations and surrounding water molecules. The ATR-FTIR spectrum evidenced the hyaluronic acid binding to the surface of the ferrophase, ensuring colloidal stability in the water dispersion. To verify the success of the synthesis and stabilization, HA-MNPs were also characterized using other investigation techniques: TEM, EDS, XRD, DSC, TG, NTA, and VSM. The results showed that the HA-MNPs had a mean physical size of 9.05 nm (TEM investigation), a crystallite dimension of about 8.35 nm (XRD investigation), and a magnetic core diameter of about 8.31 nm (VSM investigation). The HA-MNPs exhibited superparamagnetic behavior, with the magnetization curve showing saturation at a high magnetic field and a very small coercive field, corresponding to the net dominance of single-domain magnetic nanoparticles that were not aggregated with reversible magnetizability. These features satisfy the requirement for magnetic nanoparticles with a small size and good dispersibility for long-term stability. We performed some preliminary tests regarding the nanotoxicity in the environment, and some chromosomal aberrations were found to be induced in corn root meristems, especially in the anaphase and metaphase of mitotic cells. Due to their properties, HA-MNPs also seem to be suitable for use in the biomedical field.

3.
Diagnostics (Basel) ; 14(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396469

RESUMEN

COVID-19-associated rhino-orbital mucormycosis has become a new clinical entity. This study's aim was to evaluate the histopathological and ultramicroscopic morphological aspects of this fungal infection. This was an observational retrospective study on eight patients from three tertiary centers in Romania. The tissue samples collected during functional endoscopic sinus surgery were studied through histopathological examination, scanning electron microscopy, and transmission electron microscopy. In the histopathological examination, the morphological aspects characteristic of mucormycosis in all cases were identified: wide aseptate hyphae with right-angle ramifications, which invade blood vessels. One case presented perineural invasion into the perineural lymphatics. And in another case, mucormycosis-aspergillosis fungal coinfection was identified. Through scanning electron microscopy, long hyphae on the surface of the mucosa surrounded by cells belonging to the local immune system were identified in all samples, and bacterial biofilms were identified in half of the samples. Through transmission electron microscopy, aseptate hyphae and bacterial elements were identified in the majority of the samples. Rhino-orbital-cerebral mucormycosis associated with COVID-19 produces nasal sinus dysbiosis, which favors the appearance of bacterial biofilms. The way in which the infection develops depends on the interaction of the fungi with cells of the immune system.

4.
Gels ; 9(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37998958

RESUMEN

Multifunctional materials based on carbon xerogel (CX) with embedded bismuth (Bi) and iron (Fe) nanoparticles are tested for ultrasensitive amperometric detection of lead cation (Pb2+) and hydrogen peroxide (H2O2). The prepared CXBiFe-T nanocomposites were annealed at different pyrolysis temperatures (T, between 600 and 1050 °C) and characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption, dynamic light scattering (DLS), and electron microscopies (SEM/EDX and TEM). Electrochemical impedance spectroscopy (EIS) and square wave anodic stripping voltammetry (SWV) performed at glassy carbon (GC) electrodes modified with chitosan (Chi)-CXBiFe-T evidenced that GC/Chi-CXBiFe-1050 electrodes exhibit excellent analytical behavior for Pb2+ and H2O2 amperometric detection: high sensitivity for Pb2+ (9.2·105 µA/µM) and outstanding limits of detection (97 fM, signal-to-noise ratio 3) for Pb2+, and remarkable for H2O2 (2.51 µM). The notable improvements were found to be favored by the increase in pyrolysis temperature. Multi-scale parameters such as (i) graphitization, densification of carbon support, and oxide nanoparticle reduction and purification were considered key aspects in the correlation between material properties and electrochemical response, followed by other effects such as (ii) average nanoparticle and Voronoi domain dimensions and (iii) average CXBiFe-T aggregate dimension.

5.
Archaeol Anthropol Sci ; 15(12): 180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937118

RESUMEN

The first objective of this paper is to reconstruct the production technology of fourth-first centuries BCE coarse ware from surveys near the ancient town of Norba in the Lepini Mountains of Southern Lazio, Italy, adopting a multi-analytical method, combining macroscopic observation with polarised light optical microscopy (OM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The second objective of this study is to gain insight into Norba's integration in broader production and distribution networks in Southern Lazio between the fourth-first centuries BCE, by comparing the results with previous data for coarse ware prevalent in the region at that time. The results indicate that the coarse ware from Norba was produced with Fe-rich, Ca-poor, and illite-muscovite clays and fired in an oxidising atmosphere between 750 and 900 °C. Differences among the coarse ware exist in the paste recipes, e.g. intentionally added temper. Most coarse ware from Norba bears compositional similarities to that from the Alban Hills and the Tiber Valley, north of Rome, suggesting that Norba was integrated into the marketing of pottery that was common in Southern Lazio during the fourth-first centuries BCE. In comparison, only a few coarse wares seem to have been produced in the surrounding area (e.g. Satricum and Forum Appii), or even locally in Norba. The results further indicate changes in these regional/local distribution networks; some coarse ware seems to have been imported from Satricum, where a workshop was active during the fourth century BCE. When ceramic production at Satricum ceased, potters settled in the towns of Forum Appii and Norba, where they produced ceramic building material and fine ware in the second-first centuries BCE, respectively. The results of this study tentatively suggest that potters in these locations may have also manufactured coarse ware during this period.

6.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687501

RESUMEN

Several forged 3-Polker coins have been reported in historical sources on the financial crisis that occurred between 1619 and 1623 at the start of the 30-year-long war. Supposedly, belligerent countries forged other countries' coins which were then used for external payments as a war strategy. Thus, a lot of 3-Polker coins (e.g., Sigismund-III-type) were forged, and the markets became flooded with poor currency. In the present day, these pre-modern forgeries are rare archeological findings. Only five forged 3-Polker coins randomly found in Transylvania were available for the current study. There are deeper implications of silver and tin in the forgery techniques that need to be considered. Thus, the forged 3-Polker coins were investigated via nondestructive methods: SEM microscopy coupled with EDS elemental spectroscopy for complex microstructural characterization and XRD for phase identification. Three distinct types of forgery methods were identified: the amalgam method is the first used for copper blank silvering (1620), and immersion in melted silver (1621) is the second one. Both methods were used to forge coins with proper legends and inscriptions. The third method is the tin plating of copper coins (with corrupted legend and altered design) (1622, 1623, and 1624). The EDS investigation revealed Hg traces inside the compact silver crusts for the first type and the elongated silver crystallites in the immersion direction, which are well-attached to the copper core for the second type. The third forgery type has a rich tin plating with the superficial formation of Cu6Sn5 compound that assures a good resistance of the coating layer. Therefore, this type should have been easily recognized as fake by traders, while the first two types require proper weighing and margin clipping to ensure their quality.

7.
Food Chem ; 428: 136778, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37421669

RESUMEN

Olive leaf was characterized by a high content of phenols and flavonoids (oleuropein, luteolin, and their derivatives), presenting functional and health-related properties. The chemical instability of phenolics through technological processes and their degradation in the digestive system may negatively impact them, leading to lower absorption. This study evaluates the phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during the INFOGEST static in vitro digestion, aiming to enhance stability and sensorial properties. Ultrasound-assisted extraction and chromatography characterized the extract, while spray drying (maltodextrin-glucose) and nano-encapsulation (maltodextrin, whey protein isolate, and arabic gum) techniques were used with specific solutions. Encapsulated formulations underwent microscopy (TEM, SEM) and encapsulation efficiency analysis. Micro- and nano-encapsulation improved biscuit functionality by enhancing phenolic stability during digestion. However, the highest concentration adversely affected sensory and textural parameters. These findings contribute to developing functional food products enriched with bioactive compounds, providing improved health benefits while maintaining sensory attributes.


Asunto(s)
Olea , Fenoles , Fenoles/análisis , Extractos Vegetales/química , Olea/química , Digestión
8.
Plants (Basel) ; 12(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37299107

RESUMEN

Since ancient times, many plants have been cultivated for their nutritional and medicinal properties. The genus Sanguisorba has been used for medicinal purposes for more than 2000 years. These species are distributed in temperate, arctic, or alpine areas in the Northern Hemisphere. Elongated, imparipinnate leaves and densely clustered flower heads are characteristics of the genus Sanguisorba. While Sanguisorba officinalis L. is mainly known for its significant medicinal applications, Sanguisorba minor Scop. is beginning to attract greater interest for its chemical composition and biological effects. Our research collected extensive information on Sanguisorba minor, including its history, taxonomy, habitat, and distribution, as well as its bioactive components and biological activities. In addition to electron microscopy of plant parts (root, stems, and leaves), which is described for the first time in the literature in the case of S. minor, the study also provides information on potential pests or beneficial insects that may be present. Our goal was to provide important information that will serve as a solid foundation for upcoming research on Sanguisorba minor Scop.

9.
J Funct Biomater ; 14(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37367295

RESUMEN

Electrospun mats of PLA and PLA/Hap nanofibers produced by electrospinning were loaded with doxycycline (Doxy) through physical adsorption from a solution with initial concentrations of 3 g/L, 7 g/L, and 12 g/L, respectively. The morphological characterization of the produced material was performed using scanning electron microscopy (SEM). The release profiles of Doxy were studied in situ using the differential pulse voltammetry (DPV) electrochemical method on a glassy carbon electrode (GCE) and validated through UV-VIS spectrophotometric measurements. The DPV method has been shown to be a simple, rapid, and advantageous analytical technique for real-time measurements, allowing accurate kinetics to be established. The kinetics of the release profiles were compared using model-dependent and model-independent analyses. The diffusion-controlled mechanism of Doxy release from both types of fibers was confirmed by a good fit to the Korsmeyer-Peppas model.

10.
Biosensors (Basel) ; 13(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37232891

RESUMEN

The increasing pollution of surface and groundwater bodies by pharmaceuticals is a general environmental problem requiring routine monitoring. Conventional analytical techniques used to quantify traces of pharmaceuticals are relatively expensive and generally demand long analysis times, associated with difficulties in performing field analyses. Propranolol, a widely used ß-blocker, is representative of an emerging class of pharmaceutical pollutants with a noticeable presence in the aquatic environment. In this context, we focused on developing an innovative, highly accessible analytical platform based on self-assembled metal colloidal nanoparticle films for the fast and sensitive detection of propranolol based on Surface Enhanced Raman Spectroscopy (SERS). The ideal nature of the metal used as the active SERS substrate was investigated by comparing silver and gold self-assembled colloidal nanoparticle films, and the improved enhancement observed on the gold substrate was discussed and supported by Density Functional Theory calculations, optical spectra analyses, and Finite-Difference Time-Domain simulations. Next, direct detection of propranolol at low concentrations was demonstrated, reaching the ppb regime. Finally, we showed that the self-assembled gold nanoparticle films could be successfully used as working electrodes in electrochemical-SERS analyses, opening the possibility of implementing them in a wide array of analytical applications and fundamental studies. This study reports for the first time a direct comparison between gold and silver nanoparticle films and, thus, contributes to a more rational design of nanoparticle-based SERS substrates for sensing applications.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Plata/química , Nanopartículas del Metal/química , Propranolol , Espectrometría Raman/métodos , Preparaciones Farmacéuticas
11.
Materials (Basel) ; 16(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37048973

RESUMEN

Zirconia-based bioceramics, one of the most important materials used for dental applications, have been intensively studied in recent years due to their excellent mechanical resistance and chemical inertness in the mouth. In this work, the structural, morphological and dissolution properties of the Zr1-xMgxO2 (x = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) system, prepared by the conventional ceramic method, were evaluated before and after immersion in saliva substitute gel (Xerostom®, Biocosmetics Laboratories, Madrid, Spain), one of the most common topical dry mouth products used in dentistry. The X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) techniques were employed to investigate the phase transformations and morphology of the ceramics during the degradation process in Xerostom®. In vitro analyses showed overall good stability in the Xerostom® environment, except for the x = 0.05 composition, where significant t- to m-ZrO2 transformation occurred. In addition, the strong interconnection of the grains was maintained after immersion, which could allow a high mechanical strength of the ceramics to be obtained.

12.
Gels ; 9(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37102911

RESUMEN

This study presents a structural analysis of a whey and gelatin-based hydrogel reinforced with graphene oxide (GO) by ultraviolet and visible (UV-VIS) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results revealed barrier properties in the UV range for the reference sample (containing no graphene oxide) and the samples with minimal GO content of 0.66×10-3% and 3.33×10-3%, respectively, in the UV-VIS and near-IR range; for the samples with higher GO content, this was 6.67×10-3% and 33.33×10-3% as an effect of the introduction of GO into the hydrogel composite. The changes in the position of diffraction angles 2θ from the X-ray diffraction patterns of GO-reinforced hydrogels indicated a decrease in the distances between the turns of the protein helix structure due to the GO cross-linking effect. Transmission electron spectroscopy (TEM) was used for GO, whilst scanning electron microscopy (SEM) was used for the composite characterization. A novel technique for investigating the swelling rate was presented by performing electrical conductivity measurements, the results of which led to the identification of a potential hydrogel with sensor properties.

13.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110958

RESUMEN

Here we report investigations of bulk and nano-sized Pr0.65Sr(0.35-x)CaxMnO3 compounds (x ≤ 0.3). Solid-state reaction was implemented for polycrystalline compounds and a modified sol-gel method was used for nanocrystalline compounds. X-ray diffraction disclosed diminishing cell volume with increasing Ca substitution in Pbnm space group for all samples. Optical microscopy was used for bulk surface morphology and transmission electron microscopy was utilized for nano-sized samples. Iodometric titration showed oxygen deficiency for bulk compounds and oxygen excess for nano-sized particles. Measurements of resistivity of bulk samples revealed features at temperatures associated with grain boundary condition and with ferromagnetic (FM)/paramagnetic (PM) transition. All samples exhibited negative magnetoresistivity. Magnetic critical behavior analysis suggested the polycrystalline samples are governed by a tricritical mean field model while nanocrystalline samples are governed by a mean field model. Curie temperatures values lower with increasing Ca substitution from 295 K for the parent compound to 201 K for x = 0.2. Bulk compounds exhibit high entropy change, with the highest value of 9.21 J/kgK for x = 0.2. Magnetocaloric effect and the possibility of tuning the Curie temperature by Ca substitution of Sr make the investigated bulk polycrystalline compounds promising for application in magnetic refrigeration. Nano-sized samples possess wider effective entropy change temperature (ΔTfwhm) and lower entropy changes of around 4 J/kgK which, however, puts in doubt their straightforward potential for applications as magnetocaloric materials.

14.
Antibiotics (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36978324

RESUMEN

Periodontitis is one of the most common oral polymicrobial infectious diseases induced by the complex interplay between the altered subgingival microbiota and the host's dysregulated immune-inflammatory response, leading to the initiation of progressive and irreversible destruction of the periodontal tissues and eventually to tooth loss. The main goal of cause-related periodontal therapy is to eliminate the dysbiotic subgingival biofilm in order to arrest local inflammation and further periodontal tissue breakdown. Because, in some cases, subgingival mechanical instrumentation has limited efficiency in achieving those goals, various adjunctive therapies, mainly systemic and locally delivered antimicrobials, have been proposed to augment its effectiveness. However, most adjunctive antimicrobials carry side effects; therefore, their administration should be precociously considered. HybenX® (HY) is a commercial therapeutical agent with decontamination properties, which has been studied for its effects in treating various oral pathological conditions, including periodontitis. This review covers the current evidence regarding the treatment outcomes and limitations of conventional periodontal therapies and provides information based on the available experimental and clinical studies related to the HY mechanism of action and effects following its use associated with subgingival instrumentation and other types of dental treatments.

15.
Pharmaceutics ; 15(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986870

RESUMEN

A biogenic carrier for 5-fluorouracil (5-FU) loading and subsequent tableting as a new drug formulation for slow release has been proposed using the biomineral from blue crab carapace. Due to its highly ordered 3D porous nanoarchitecture, the biogenic carbonate carrier could achieve increased effectiveness in colorectal cancer cure provided that the formulation would successfully pass through the gastric acid conditions. Following the recently proven viability of the concept by demonstrating the slow release of the drug from the carrier using the highly sensitive SERS technique, here we investigated the 5-FU release from the composite tablet drug in pH conditions replicating the gastric environment. The released drug from the tablet was studied in solutions with three relevant pH values, pH 2, pH 3, and pH 4. The 5-FU SERS spectral signature for each pH value was used to build calibration curves for quantitative SERS analysis. The results suggested a similarly slow-releasing pattern in acid pH environments to that in neutral conditions. Although biogenic calcite dissolution was expected in acid conditions, the X-ray diffraction and Raman spectroscopy showed preservation of calcite mineral along with the monohydrocalcite during acid solution exposure for two hours. The total released amount in a time course of seven hours, however, was lower in acidic pH solutions, with a maximum fraction of ~40% of the total amount of loaded drug, for pH 2, as opposed to ~80% for neutral values. Nonetheless, these results clearly prove that the novel composite drug retains its slow-releasing character in environmental conditions compatible with the gastrointestinal pH and that it is a viable and biocompatible alternative for oral delivery of anticancer drug to reach the lower gastro-intestinal tract.

16.
Materials (Basel) ; 16(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36837027

RESUMEN

Surface modification of textile fabrics and leathers is very versatile and allows the products quality improvement. In this work, cotton and leather substrates were pre-treated with cold atmospheric pressure plasma (CAPP) and further coated with TiO2-SiO2-reduced graphene oxide composites in dispersion form. By using a Taguchi scheme, this research evaluated the effect of three significant parameters, i.e., the pre-treatment with CAPP, organic dispersion coating and TiO2-SiO2-reduced graphene oxide (TS/GR) composites, that may affect the morpho-structural properties and photocatalytic activity of modified cotton and leather surfaces. The characteristics of cotton/leather surfaces were evaluated by morphological, structural, optical and self-cleaning ability using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray powder diffraction (XRD), attenuated total reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and UV-Vis spectroscopy. The self-cleaning performance of the obtained cotton and leather samples was evaluated by photocatalytic discoloration of berry juice surface stains under UV light irradiation for 12 h. The successfulness of coating formulations was proven by the SEM analysis and UV-Vis spectroscopy. The XRD patterns and ATR-FTIR spectra revealed the cellulose and collagen structures as dominant components of cotton and leather substrates. The CAPP treatment did not damage the cotton and leather structures. The photocatalytic results highlighted the potential of TiO2-SiO2-reduced graphene oxide composites in organic dispersion media, as coating formulations, for further use in the fabrication of innovative self-cleaning photocatalytic cotton and leather products.

17.
Pharmaceutics ; 15(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36839899

RESUMEN

Mucoadhesive films loaded with doxycycline hyclate (Doxy Hyc), consisting of mixtures of hydroxypropylmethyl cellulose (HPMC) E3, K4 and polyacrylic acid (Carbopol 940), were prepared by casting method, aiming to design a formulation intended for application in the oral cavity. The obtained film formulations exhibited a Doxy Hyc content between 7.52 ± 0.42 and 7.83 ± 0.41%, which had adequate mechanical properties for application in the oral cavity and pH values in the tolerance range. The x-ray diffraction studies highlighted the amorphisation of Doxy Hyc in the preparation process and the antibiotic particles present on the surface of the films, identified in the TEM images, which ensured a burst release effect in the first 15 min of the in vitro dissolution studies, after which Doxy Hyc was released by diffusion, the data presenting a good correlation with the Peppas model, n < 0.5. The formulation F1, consisting of HPMC K4 combined with C940 in a ratio of 5:3, the most performing in vitro, was tested in vivo in experimentally-induced periodontitis and demonstrated its effectiveness in improving the clinical parameters and reducing the salivary levels of matrix metalloproteinase-8 (MMP-8). The prepared Doxy Hyc loaded mucoadhesive buccal film could be used as an adjuvant for the local treatment of periodontitis, ensuring prolonged release of the antibiotic after topical application.

18.
Polymers (Basel) ; 15(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36850247

RESUMEN

(1) Background: The current limitations of glioblastoma (GBM) chemotherapy were addressed by developing a molecularly imprinted polymer (MIP)-based drug reservoir designed for the localized and sustained release of ruxolitinib (RUX) within the tumor post-resection cavity, targeting residual infiltrative cancerous cells, with minimum toxic effects toward normal tissue. (2) Methods: MIP reservoirs were synthesized by precipitation polymerization using acrylamide, trifluoromethacrylic acid, methacrylic acid, and styrene as monomers. Drug release profiles were evaluated by real-time and accelerated release studies in phosphate-buffered solution as a release medium. The cytotoxicity of polymers and free monomers was evaluated in vitro on GBM C6 cells using the Alamar Blue assay, optical microscopy, and CCK8 cell viability assay. (3) Results: Among the four synthesized MIPs, trifluoromethacrylic acid-based polymer (MIP 2) was superior in terms of loading capacity (69.9 µg RUX/mg MIP), drug release, and efficacy on GBM cells. Accelerated drug release studies showed that, after 96 h, MIP 2 released 42% of the loaded drug at pH = 7.4, with its kinetics fitted to the Korsmeyer-Peppas model. The cell viability assay proved that all studied imprinted polymers provided high efficacy on GBM cells. (4) Conclusions: Four different drug-loaded MIPs were developed and characterized within this study, with the purpose of obtaining a drug delivery system (DDS) embedded in a fibrin-based hydrogel for the local, post-surgical administration of RUX in GBM in animal models. MIP 2 emerged as superior to the others, making it more suitable and promising for further in vivo testing.

19.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615613

RESUMEN

One of several promising strategies for increasing the bioavailability and therapeutic potential of high-lipophilic biologically active compounds is gold nanoparticle formulation. The current study describes the synthesis and biological antimelanoma evaluation of three triterpen-functionalized gold nanoparticles, obtained using our previously reported antimelanoma benzotriazole-triterpenic acid esters. Functionalized gold nanoparticle (GNP) formation was validated through UV-VIS and FTIR spectroscopy. The conjugate's cytotoxic effects were investigated using HaCaT healthy keratinocytes and A375 human melanoma cells. On A375 cells, all three conjugates demonstrated dose-dependent cytotoxic activity, but no significant cytotoxic effects were observed on normal HaCaT keratinocytes. GNP-conjugates were found to be more cytotoxic than their parent compounds. After treatment with all three GNP-conjugates, 4,6'-diamidino-2-phenylindole (DAPI) staining revealed morphological changes consistent with apoptosis in A375 melanoma cells. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed that the triterpene-GNP conjugate treated A375 melanoma cells had a fold change increase in Bcl-2-associated X protein (BAX) expression and a fold change decrease in B-cell lymphoma 2 (Bcl-2) expression. In A735 melanoma cells, high-resolution respirometry studies revealed that all three GNP-conjugates act as selective inhibitors of mitochondrial function. Furthermore, by examining the effect on each mitochondrial respiratory rate, the results indicate that all three conjugates are capable of increasing the production of reactive oxygen species (ROS), an apoptosis trigger in cancer cells.


Asunto(s)
Antineoplásicos , Melanoma , Nanopartículas del Metal , Humanos , Oro/química , Nanopartículas del Metal/química , Apoptosis , Melanoma/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral
20.
Medicina (Kaunas) ; 59(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36676728

RESUMEN

Three ceramic and composite computer-aided design/computer-aided manufacturing (CAD/CAM) materials from different manufacturers (Cerasmart (CS)-nanoceramic resin; Straumann Nice (SN)-glass ceramic and Tetric CAD (TC)-composite resin) were tested to investigate the biocompatibility and sustainability on human fibroblasts and keratinocytes cells. Each type of CAD/CAM blocks restorative materials with fine and rough surfaces was exposed to an acidic environment for one month. After that, various powders were obtained by milling. In parallel, powders were also prepared from each restorative material, which were not exposed to the acidic environment. The cytotoxic effects were investigated by means of MTT and LDH assays, as well as nitric oxide production on two human normal cell lines, namely, fibroblasts (BJ) and keratinocytes (HaCaT). In addition, the degree of adhesion of fibroblast cells to each CAD/CAM material was evaluated by scanning electron microscopy (SEM). The results showed that the two samples that were exposed to an acidic environment (CS and SN) induced a reduction of mitochondrial activity and plasma membrane damage as regards the fibroblast cells. A similar effect was observed in TC_fine-exposed material, which seemed to induce necrosis at the tested concentration of 1 mg/mL. No oxidative stress was observed in fibroblasts and keratinocytes treated with the CAD/CAM materials. Regarding the adhesion degree, it was found that the fibroblasts adhere to all the occlusal veneers tested, with the mention that the CS and SN materials have a weaker adhesion with fewer cytoplasmic extensions than TC material. With all of this considered, the CAD/CAM restorative materials tested are biocompatible and represent support for the attachment and dispersion of cells.


Asunto(s)
Diseño Asistido por Computadora , Humanos , Ensayo de Materiales , Propiedades de Superficie , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...