Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38790339

RESUMEN

This study explores an approach to design and prepare a multilayer scaffold mimicking interstratified natural tissue. This multilayer construct, composed of chitosan matrices with graded nanohydroxyapatite concentrations, was achieved through an in situ biomineralization process applied to individual layers. Three distinct precursor concentrations were considered, resulting in 10, 20, and 30 wt% nanohydroxyapatite content in each layer. The resulting chitosan/nanohydroxyapatite (Cs/n-HAp) scaffolds, created via freeze-drying, exhibited nanohydroxyapatite nucleation, homogeneous distribution, improved mechanical properties, and good cytocompatibility. The cytocompatibility analysis revealed that the Cs/n-HAp layers presented cell proliferation similar to the control in pure Cs for the samples with 10% n-HAp, indicating good cytocompatibility at this concentration, while no induction of apoptotic death pathways was demonstrated up to a 20 wt% n-Hap concentration. Successful multilayer assembly of Cs and Cs/n-HAp layers highlighted that the proposed approach represents a promising strategy for mimicking multifaceted tissues, such as osteochondral ones.

2.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984903

RESUMEN

Monitoring of ions in real-time directly in cell culture systems and in organ-on-a-chip platforms represents a significant investigation tool to understand ion regulation and distribution in the body and ions' involvement in biological mechanisms and specific pathologies. Innovative flexible sensors coupling electrochemical stripping analysis (square wave anodic stripping voltammetry, SWASV) with an ion selective membrane (ISM) were developed and integrated in Transwell™ cell culture systems to investigate the transport of zinc and copper ions across a human intestinal Caco-2 cell monolayer. The fabricated ion-selective sensors demonstrated good sensitivity (1 × 10-11 M ion concentration) and low detection limits, consistent with pathophysiological cellular concentration ranges. A non-invasive electrochemical impedance spectroscopy (EIS) analysis, in situ, across a selected spectrum of frequencies (10-105 Hz), and an equivalent circuit fitting were employed to obtain useful electrical parameters for cellular barrier integrity monitoring. Transepithelial electrical resistance (TEER) data and immunofluorescent images were used to validate the intestinal epithelial integrity and the permeability enhancer effect of ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) treatment. The proposed devices represent a real prospective tool for monitoring cellular and molecular events and for studies on gut metabolism/permeability. They will enable a rapid integration of these sensors into gut-on-chip systems.

3.
Pharmaceutics ; 15(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36839801

RESUMEN

Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe lesions/damages. Several biomaterial-based strategies were developed to support and enhance vasculogenesis by supplying pro-angiogenic agents. Several approaches were adopted to develop effective drug delivery systems for the controlled release of a huge variety of compounds. In this work, a microparticulate system was chosen to be loaded with the essential amino acid L-lysine, a molecule that has recently gained interest due to its involvement in pro-angiogenic, pro-regenerative, and anti-inflammatory mechanisms. Poly (lactic-co-glycolic acid), the most widely used FDA-approved biodegradable synthetic polymer for the development of drug delivery systems, was chosen due to its versatility and ability to promote neovascularization and wound healing. This study dealt with the development and the effectiveness evaluation of a PLGA-based microparticulate system for the controlled release of L-lysine. Therefore, in order to maximize L-lysine encapsulation efficiency and tune its release kinetics, the microparticle synthesis protocol was optimized by varying some processing parameters. All developed formulations were characterized from a morphological and physicochemical point of view. The optimized formulation was further characterized via the evaluation of its preliminary biological efficacy in vitro. The cellular and molecular studies revealed that the L-lysine-loaded PLGA microparticles were non-toxic, biocompatible, and supported cell proliferation and angiogenesis well by stimulating the expression of pro-angiogenic genes such as metalloproteinase-9, focal adhesion kinases, and different growth factors. Thus, this work showed the potential of delivering L-lysine encapsulated in PLGA microparticles as a cost-effective promoter system for angiogenesis enhancement and rapid healing.

4.
Int J Mol Sci ; 23(21)2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361959

RESUMEN

SLC15A4/PHT1 is an endolysosome-resident carrier of oligopeptides and histidine recently come into view as a key path marker of immune/autoimmune/inflammatory pathways in immune cells. Yet, its emerging role in inflammatory processes directly targeting the gastrointestinal epithelial layer, as in the multifactorial pathophysiology of inflammatory bowel disease (IBD), is poorly investigated. Here, the first identification of SLC15A4/PHT1 gene products in human colonic epithelium of ulcerative colitis (UC) patients is reported, showing protein primarily localized in intracellular vesicle-like compartments. Qualitative and quantitative immunohistochemical analyses of colon biopsies revealed overexpression of SLC15A4/PHT1 protein product in the epithelial layer of UC patients. Results were successfully mirrored in vitro, in spontaneously differentiated enterocyte-like monolayers of Caco-2 cells specifically exposed to DSS (dextran sodium sulphate) to mimic IBD inflammatory onsets. SLC15A4/PHT1 expression and cellular localization were characterized confirming its (dys)regulation traits in inflamed vs. healthy epithelia, strongly hinting the hypothesis of SLC15A4/PHT1 increased function associated with epithelial inflammation in IBD patients.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Proteínas de Transporte de Membrana , Humanos , Células CACO-2 , Colitis/patología , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Sulfato de Dextran , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Regulación hacia Arriba
5.
Inflammation ; 45(6): 2477-2497, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35732858

RESUMEN

Winnie, a mouse carrying a missense mutation in the MUC2 mucin gene, is a valuable model for inflammatory bowel disease (IBD) with signs and symptoms that have multiple similarities with those observed in patients with ulcerative colitis. MUC2 mucin is present in Winnie, but is not firmly compacted in a tight inner layer. Indeed, these mice develop chronic intestinal inflammation due to the primary epithelial defect with signs of mucosal damage, including thickening of muscle and mucosal layers, goblet cell loss, increased intestinal permeability, enhanced susceptibility to luminal inflammation-inducing toxins, and alteration of innervation in the distal colon. In this study, we show that the intestinal environment of the Winnie mouse, genetically determined by MUC2 mutation, selects an intestinal microbial community characterized by specific pro-inflammatory, genotoxic, and metabolic features that could imply a direct involvement in the pathogenesis of chronic intestinal inflammation. We report results obtained by using a variety of in vitro approaches for fecal microbiota functional characterization. These approaches include Caco-2 cell cultures and Caco-2/THP-1 cell co-culture models for evaluation of geno-cytotoxic and pro-inflammatory properties using a panel of 43 marker RNAs assayed by RT-qPCR, and cell-based phenotypic testing for metabolic profiling of the intestinal microbial communities by Biolog EcoPlates. While adding a further step towards understanding the etiopathogenetic mechanisms underlying IBD, the results of this study provide a reliable method for phenotyping gut microbial communities, which can complement their structural characterization by providing novel functional information.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Ratones , Animales , Roedores , Células CACO-2 , Mucosa Intestinal/metabolismo , Colitis/patología , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucinas/metabolismo , Enfermedad Crónica , Daño del ADN , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
6.
Curr Res Physiol ; 5: 193-202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434651

RESUMEN

The reduced availability of dissolved oxygen is a common stressor in aquatic habitats that affects the ability of the heart to ensure tissue oxygen supply. Among key signalling molecules activated during cardiac hypoxic stress, nitric oxide (NO) has emerged as a central player involved in the related adaptive responses. Here, we outline the role of the nitrergic control in modulating tolerance and adaptation of teleost heart to hypoxia, as well as major molecular players that participate in the complex NO network. The purpose is to provide a framework in which to depict how the heart deals with limitations in oxygen supply. In this perspective, defining the relational interplay between the multiple (sets of) proteins that, due to the gene duplication events that occurred during the teleost fish evolutive radiation, do operate in parallel with similar functions in the (different) heart (districts) and other body districts under low levels of oxygen supply, represents a next goal of the comparative research in teleost fish cardiac physiology.

7.
Antioxidants (Basel) ; 11(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35453449

RESUMEN

Alamandine is a peptide of the Renin Angiotensin System (RAS), either generated from Angiotensin A via the Angiotensin Converting Enzyme 2 (ACE2), or directly from Ang-(1-7). In mammals, it elicits cardioprotection via Mas-related G-protein-coupled receptor D (MrgD), and the NOS/NO system. In teleost fish, RAS is known to modulate heart performance. However, no information is available on the presence of a cardioactive ACE2/Alamandine axis. To fill this gap, we used the cyprinid teleost Carassius auratus (goldfish) for in silico and in vitro analyses. Via the NCBI Blast P suite we found that in cyprinids ace2 is phylogenetically detectable in a subcluster of proteins including ace2-like isoforms, and is correlated with a hypoxia-dependent pathway. By real-time PCR, Western Blotting, and HPLC, ACE2 and Alamandine were identified in goldfish heart and plasma, respectively. Both increased after chronic exposure to low O2 (2.6 mg O2 L-1). By using an ex-vivo working goldfish-heart preparation, we observed that in vitro administration of exogenous Alamandine dose-dependently stimulates myocardial contractility starting from 10-11 M. The effect that involved Mas-related receptors and PKA occurred via the NOS/NO system. This was shown by exposing the perfused heart to the NOS inhibitor L-NMMA (10-5 M) that abolished the cardiac effect of Alamandine and was supported by the increased expression of the phosphorylated NOS enzyme in the extract from goldfish heart exposed to 10-10 M Alamandine. Our data are the first to show that an ACE2/Alamandine axis is present in the goldfish C. auratus and, to elicit cardiac modulation, requires the obligatory involvement of the NOS/NO system.

8.
J Physiol ; 600(10): 2377-2400, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413133

RESUMEN

The high-affinity/low-capacity system Slc15a2 (PepT2) is responsible for the reuptake of di/tripeptides from the renal proximal tubule, but it also operates in many other tissues and organs. Information regarding PepT2 in teleost fish is limited and, to date, functional data are available from the zebrafish (Danio rerio) only. Here, we report the identification of two slc15a2 genes in the Atlantic salmon (Salmo salar) genome, namely slc15a2a and slc15a2b. The two encoded PepT2 proteins share 87% identity and resemble both structurally and functionally the canonical vertebrate PepT2 system. The mRNA tissue distribution analyses reveal a widespread distribution of slc15a2a transcripts, being more abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and the distal part of the gastrointestinal tract. The function of the two transporters was investigated by heterologous expression in Xenopus laevis oocytes and two-electrode voltage-clamp recordings of transport and presteady-state currents. Both PepT2a and PepT2b in the presence of Gly-Gln elicit pH-dependent and Na+ independent inward currents. The biophysical and kinetic analysis of the recorded currents defined the transport properties, confirming that the two Atlantic salmon PepT2 proteins behave as high-affinity/low-capacity transporters. The recent structures and the previous kinetic schemes of rat and human PepT2 qualitatively account for the characteristics of the two Atlantic salmon proteins. This study is the first to report on the functional expression of two PepT2-type transporters that operate in the same vertebrate organism as a result of (a) gene duplication process(es). KEY POINTS: Two slc15a2-type genes, slc15a2a and slc15a2b coding for PepT2-type peptide transporters were found in the Atlantic salmon. slc15a2a transcripts, widely distributed in the fish tissues, are abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and distal gastrointestinal tract. Amino acids involved in vertebrate Slc15 transport function are conserved in PepT2a and PepT2b proteins. Detailed kinetic analysis indicates that both PepT2a and PepT2b operate as high-affinity transporters. The kinetic schemes and structures proposed for the mammalian models of PepT2 are suitable to explain the function of the two Atlantic salmon transporters.


Asunto(s)
Salmo salar , Simportadores , Animales , Cinética , Mamíferos/metabolismo , Oocitos/metabolismo , Ratas , Salmo salar/genética , Salmo salar/metabolismo , Simportadores/genética , Simportadores/metabolismo , Pez Cebra/genética
9.
Nutrients ; 14(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35334833

RESUMEN

Inflammatory bowel disease (IBD) implies the chronic inflammation of the gastrointestinal tract, combined with systemic vascular manifestations. In IBD, the incidence of cardiovascular disease appears to be related to an increase of oxidative stress and endothelial dysfunction. Grape pomace contains high levels of anti-oxidant polyphenols that are able to counteract chronic inflammatory symptoms. The aim of this study was to determine whether grape pomace polyphenolic extract (GPE) was able to mitigate the overwhelming inflammatory response in enterocyte-like cells and to improve vascular function. Intestinal epithelial Caco-2 cells, grown in monolayers or in co-culture with endothelial cells (Caco-2/HMEC-1), were treated with different concentrations of GPE (1, 5, 10 µg/mL gallic acid equivalents) for 2 h and then stimulated with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α for 16 h. Through multiple assays, the expression of intestinal and endothelial inflammatory mediators, intracellular reactive oxygen species (ROS) levels and NF-κB activation, as well as endothelial-leukocyte adhesion, were evaluated. The results showed that GPE supplementation prevented, in a concentration-dependent manner, the intestinal expression and release of interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and matrix metalloproteinases (MMP)-9 and MMP-2. In Caco-2 cells, GPE also suppressed the gene expression of several pro-inflammatory markers, such as IL-1ß, TNF-α, macrophage colony-stimulating factor (M-CSF), C-X-C motif ligand (CXCL)-10, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and cyclooxygenase (COX)-2. The GPE anti-inflammatory effect was mediated by the inhibition of NF-κB activity and reduced intracellular ROS levels. Furthermore, transepithelial GPE suppressed the endothelial expression of IL-6, MCP-1, VCAM-1, and ICAM-1 and the subsequent adhesion of leukocytes to the endothelial cells under pro-inflammatory conditions. In conclusion, our findings suggest grape pomace as a natural source of polyphenols with multiple health-promoting properties that could contribute to the mitigation of gut chronic inflammatory diseases and improve vascular endothelial function.


Asunto(s)
Células Endoteliales , Vitis , Células CACO-2 , Células Endoteliales/metabolismo , Humanos , Inflamación/metabolismo , Extractos Vegetales/farmacología
10.
Neurochem Res ; 47(1): 111-126, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34304372

RESUMEN

To the SLC6 family belong 20 human transporters that utilize the sodium electrochemical gradient to move biogenic amines, osmolytes, amino acids and related compounds into cells. They are classified into two functional groups, the Neurotransmitter transporters (NTT) and Nutrient amino acid transporters (NAT). Here we summarize how since their first cloning in 1998, the insect (Lepidopteran) Orthologs of the SLC6 family transporters have represented very important tools for investigating functional-structural relationships, mechanism of transport, ion and pH dependence and substate interaction of the mammalian (and human) counterparts.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Proteínas Portadoras/metabolismo , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Relación Estructura-Actividad
11.
J Inorg Biochem ; 226: 111660, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801970

RESUMEN

Nucleos(t)ide analogues (NA) belong to a family of compounds widely used in anticancer/antiviral treatments. They generally exhibit a cell toxicity limited by cellular uptake levels and the resulting nucleos(t)ides metabolism modifications, interfering with the cell machinery for nucleic acids synthesis. We previously synthesized purine nucleos(t)ide analogues N7-coordinated to a platinum centre with unaltered sugar moieties of the type: [Pt(dien)(N7-dGuo)]2+ (1; dien = diethylenetriamine; dGuo = 2'-deoxy-guanosine), [Pt(dien)(N7-dGMP)] (2; dGMP = 5'-(2'-deoxy)-guanosine monophosphate), and [Pt(dien)(N7-dGTP)]2- (3; dGTP = 5'-(2'-deoxy)-guanosine triphosphate), where the indicated electric charge is calculated at physiological pH (7.4). In this work, we specifically investigated the uptake of these complexes (1-3) at the plasma membrane level. Specific experiments on HeLa cervical cancer cells indicated a relevant cellular uptake of the model platinated deoxynucleos(t)ide 1 and 3 while complex 2 appeared unable to cross the cell plasma membrane. Obtained data buttress an uptake mechanism involving Na+-dependent concentrative transporters localized at the plasma membrane level. Consistently, 1 and 3 showed higher cytotoxicity with respect to complex 2 also suggesting selective possible applications as antiviral/antitumor drugs among the used model compounds.


Asunto(s)
Membrana Celular/metabolismo , Citotoxinas , Guanosina , Compuestos Organoplatinos , Transporte Biológico , Citotoxinas/síntesis química , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacología , Guanosina/análogos & derivados , Guanosina/química , Guanosina/farmacocinética , Guanosina/farmacología , Células HeLa , Humanos , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacocinética , Compuestos Organoplatinos/farmacología
12.
Biology (Basel) ; 12(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36671729

RESUMEN

The dis(re)organization of the cytoskeletal actin in enterocytes mediates epithelial barrier dys(re)function, playing a key role in modulating epithelial monolayer's integrity and remodeling under transition from physiological to pathological states. Here, by fluorescence-based morphological and morphometric analyses, we detected differential responses of cytoskeletal actin in intestinal epithelial Caco-2 cell monolayers at two different stages of their spontaneous differentiation, i.e., undifferentiated cells at 7 days post-seeding (dps) and differentiated enterocyte-like cells at 21 dps, upon challenge in vitro with the inflammation-mimicking stimulus of phorbol-12-myristate-13-acetate (PMA). In addition, specific responses were found in the presence of the natural dipeptide carnosine detecting its potential counteraction against PMA-induced cytoskeletal alterations and remodeling in differentiated Caco-2 monolayers. In such an experimental context, by both immunocytochemistry and Western blot assays in Caco-2 monolayers, we identified the expression of the allograft inflammatory factor 1 (AIF-1) as protein functionally related to both inflammatory and cytoskeletal pathways. In 21 dps monolayers, particularly, we detected variations of its intracellular localization associated with the inflammatory stimulus and its mRNA/protein increase associated with the differentiated 21 dps enterocyte-like monolayer compared to the undifferentiated cells.

13.
Microorganisms ; 9(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34683368

RESUMEN

Coccoid cyanobacteria produce a great variety of secondary metabolites, which may have useful properties, such as antibacterial, antiviral, anticoagulant or anticancer activities. These cyanobacterial metabolites have high ecological significance, and they could be considered responsible for the widespread occurrence of these microorganisms. Considering the great benefit derived from the identification of competent cyanobacteria for the extraction of bioactive compounds, two strains of picocyanobacteria (coccoid cyanobacteria < 3 µm) (Cyanobium sp. ITAC108 and Synechococcus sp. ITAC107) isolated from the Mediterranean sponge Petrosia ficiformis were analyzed. The biological effects of organic and aqueous extracts from these picocyanobacteria toward the nauplii of Artemia salina, sea urchin embryos and human cancer lines (HeLa cells) were evaluated. Methanolic and aqueous extracts from the two strains strongly inhibited larval development; on the contrary, in ethyl acetate and hexane extracts, the percentage of anomalous embryos was low. Moreover, all the extracts of the two strains inhibited HeLa cell proliferation, but methanol extracts exerted the highest activity. Gas chromatography-mass spectrometry analysis evidenced for the first time the presence of ß-N-methylamino-l-alanine and microcystin in these picocyanobacteria. The strong cytotoxic activity observed for aqueous and methanolic extracts of these two cyanobacteria laid the foundation for the production of bioactive compounds of pharmacological interest.

14.
Front Physiol ; 12: 666670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234687

RESUMEN

Food intake is a vital process that supplies necessary energy and essential nutrients to the body. Information regarding luminal composition in the gastrointestinal tract (GIT) collected through mechanical and nutrient sensing mechanisms are generally conveyed, in both mammals and fish, to the hypothalamic neurocircuits. In this context, ghrelin, the only known hormone with an orexigenic action, and the intestinal peptide transporters 1 and 2, involved in absorption of dietary di- and tripeptides, exert important and also integrated roles for the nutrient uptake. Together, both are potentially involved in signaling pathways that control food intake originating from different segments of the GIT. However, little is known about the role of different paralogs and their response to fasting. Therefore, after 3 weeks of acclimatization, 12 Atlantic salmon (Salmo salar) post-smolt were fasted for 4 days to explore the gastrointestinal response in comparison with fed control (n = 12). The analysis covered morphometric (weight, length, condition factor, and wet content/weight fish %), molecular (gene expression variations), and correlation analyses. Such short-term fasting is a common and recommended practice used prior to any handling in commercial culture of the species. There were no statistical differences in length and weight but a significant lower condition factor in the fasted group. Transcriptional analysis along the gastrointestinal segments revealed a tendency of downregulation for both paralogous genes slc15a1a and slc15a1b and with significant lowered levels in the pyloric ceca for slc15a1a and in the pyloric ceca and midgut for slc15a1b. No differences were found for slc15a2a and slc15a2b (except a higher expression of the fasted group in the anterior midgut), supporting different roles for slc15 paralogs. This represents the first report on the effects of fasting on slc15a2 expressed in GIT in teleosts. Transcriptional analysis of ghrelin splicing variants (ghrl-1 and ghrl-2) showed no difference between treatments. However, correlation analysis showed that the mRNA expression for all genes (restricted to segment with the highest levels) were affected by the residual luminal content. Overall, the results show minimal effects of 4 days of induced fasting in Atlantic salmon, suggesting that more time is needed to initiate a large GIT response.

15.
Gen Comp Endocrinol ; 301: 113663, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220301

RESUMEN

Angiotensin II (AngII), the principal effector of the Renin-Angiotensin System, is a pluripotent humoral agent whose biological actions include short-term modulations and long-term adaptations. In fish, short-term cardio-tropic effects of AngII are documented, but information on the role of AngII in long-term cardiac remodelling is not fully understood. Here, we describe a direct approach to disclose long-term morpho-functional effects of AngII on the zebrafish heart. Adult fish exposed to waterborne teleost analogue AngII for 8 weeks showed enhanced heart weight and cardio-somatic index, coupled to myocardial structural changes (i.e. augmented compacta thickness and fibrosis), and increased heart rate. These findings were paralleled by an up-regulation of type-1 and type-2 AngII receptors expression, and by changes in the expression of GATA binding protein 4, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 and superoxide dismutase 1 soluble mRNAs, as well as of cytochrome b-245 beta polypeptide protein, indicative of cardiac remodelling. Our results suggest that waterborne AngII can sustain and robustly affect the cardiac morpho-functional remodelling of adult zebrafish.


Asunto(s)
Pez Cebra , Angiotensina II , Animales , Corazón , Miocardio/metabolismo , Sistema Renina-Angiotensina
16.
Biology (Basel) ; 9(11)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113830

RESUMEN

The development of nanocomposites with tailored physical-chemical properties, such as nanoparticles containing magnetic iron oxides for manipulating cellular events at distance, implies exciting prospects in biomedical applications for bone tissue regeneration. In this context, this study aims to emphasize the occurrence of differential responsiveness in osteoblast-like cells to different nanocomposites with diverse features: dextran-grafted iron oxide (DM) nanoparticles and their hybrid nano-hydroxyapatite (DM/n-HA) counterpart. Here, responsiveness of cells in the presence of DMs or DM/n-HAs was evaluated in terms of cytoskeletal features. We observed that effects triggered by the DM are no more retained when DM is embedded onto the DM/n-HA nanocomposites. Also, analysis of mRNA level variations of the focal adhesion kinase (FAK), P53 and SLC11A2/DMT1 human genes showed that the DM/n-HA-treated cells retain tracts of physiological responsiveness compared to the DM-treated cells. Overall, a shielding effect by the n-HA component can be assumed, masking the DM's cytotoxic potential, also hinting a modular biomimicry of the nanocomposites respect to the physiological responses of osteoblast-like cells. In this view, the biocompatibility of n-HA together with the magnetic responsiveness of DMs represent an optimized combination of structural with functional features of the DM/n-HA nano-tools for bone tissue engineering, for finely acting within physiological ranges.

17.
Biology (Basel) ; 9(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650623

RESUMEN

Chitosan is a polysaccharide commonly used, together with its derivatives, in the preparation of hydrogel formulations, scaffolds and films for tissue engineering applications. Chitosan can be used as such, but it is commonly stabilized by means of chemical crosslinkers. Genipin is one of the crosslinkers that has been considered that is a crystalline powder extracted from the fruit of Gardenia jasminoides and processed to obtain an aglycon compound. Genipin is gaining interest in biological applications because of its natural origin and anti-inflammatory actions. In this paper, the ability of chitosan-based materials crosslinked with genipin to exert anti-inflammation properties in applications such as bone regeneration was studied. Powders obtained from chitosan-genipin scaffolds have been tested in order to mimic the natural degradation processes occurring during biomaterials implantation in vivo. The results from osteoblast-like cells showed that specific combinations of chitosan and genipin stimulate high permissiveness towards cells, with higher performance than the pure chitosan. In parallel, evidences from monocyte-like cells showed that the crosslinker, genipin, seems to promote slowing of the monocyte-macrophage transition at morphological level. This suggests a sort of modularity of pro-inflammatory versus anti-inflammatory behavior of our chitosan-based biomaterials. Being both the cell types exposed to microscale powders, as an added value our results bring information on the cell-material interactions in the degradative dynamics of chitosan scaffold structures during the physiological resorption processes.

18.
Int J Biol Macromol ; 154: 291-306, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32173436

RESUMEN

Type I collagen is the most abundant protein of the human body. Due to its favourable properties, collagen extracted from animal tissues is adopted to manufacture a wide range of devices for biomedical applications. Compared to bovine and porcine collagens, which are the most largely used, equine collagen is free from the risk of zoonosis, has no reported immune reactions, and has not religious constraints. In this work, a recently available type I collagen extracted from horse tendon was evaluated and compared with a commercially available collagen isoform derived from the same species and tissue. Detailed physical, chemical and biological investigations were performed, in agreement with the requirements of the current standard for the characterization of type I collagen to be used for the manufacture of Tissue Engineering Medical Products. To the best of our knowledge, this is the first report on the complete primary structure of the investigated collagen.


Asunto(s)
Materiales Biocompatibles , Colágeno Tipo I/química , Caballos , Tendones/química , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ratones , Células 3T3 NIH
20.
Am J Physiol Cell Physiol ; 318(1): C191-C204, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31664857

RESUMEN

Peptide transporter 1 (PepT1) mediates the uptake of dietary di-/tripeptides in vertebrates. However, in teleost fish gut, more than one PepT1-type transporter might operate, because of teleost-specific whole gen(om)e duplication event(s) that occurred during evolution. Here, we describe a novel teleost di-/tripeptide transporter, i.e., the Atlantic salmon (Salmo salar) peptide transporter 1a [PepT1a; or solute carrier family 15 member 1a (Slc15a1a)], which is a paralog (77% similarity and 64% identity at the amino acid level) of the well-described Atlantic salmon peptide transporter 1b [PepT1b, alias PepT1; or solute carrier family 15 member 1b (Slc15a1b)]. Comparative analysis and evolutionary relationships of gene/protein sequences were conducted after ad hoc database mining. Tissue mRNA expression analysis was performed by quantitative real-time PCR, whereas transport function analysis was accomplished by heterologous expression in Xenopus laevis oocytes and two-electrode voltage-clamp measurements. Atlantic salmon pept1a is highly expressed in the proximal intestine (pyloric ceca ≈ anterior midgut > midgut >> posterior midgut), in the same gut regions as pept1b but notably ~5-fold less abundant. Like PepT1b, Atlantic salmon PepT1a is a low-affinity/high-capacity system. Functional analysis showed electrogenic, Na+-independent/pH-dependent transport and apparent substrate affinity (K0.5) values for Gly-Gln of 1.593 mmol/L at pH 7.6 and 0.076 mmol/L at pH 6.5. In summary, we show that a piscine PepT1a-type transporter is functional. Defining the role of Atlantic salmon PepT1a in the gut will help to understand the evolutionary and functional relationships among peptide transporters. Its functional characterization will contribute to elucidate the relevance of peptide transporters in Atlantic salmon nutritional physiology.


Asunto(s)
Dipéptidos/metabolismo , Proteínas de Peces/metabolismo , Absorción Intestinal , Transportador de Péptidos 1/metabolismo , Salmo salar/metabolismo , Animales , Evolución Molecular , Proteínas de Peces/química , Proteínas de Peces/genética , Regulación de la Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Transportador de Péptidos 1/química , Transportador de Péptidos 1/genética , Filogenia , Salmo salar/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...