Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Materials (Basel) ; 15(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36295339

RESUMEN

Molecularly imprinted membrane of ß-caryophyllene (MIM-ßCP) was fabricated incorporating ß-caryophyllene molecularly imprinted polymer nanoparticles (ßCP-NP) into polycaprolactone (PCL) fibers via electrospinning. The ßCP-NP were synthesized by precipitation polymerization using the ßCP as a template molecule and acrylic acid as a functional monomer in the proportion of 1:4 mol, respectively. Atomic force microscopy images and X-ray diffraction confirmed the nanoparticles' incorporation into MIM-ßCP. MIM-ßCP functionalization was evaluated by gas chromatography. The binding capacity was 1.80 ± 0.05 µmol/cm2, and the selectivity test was performed with a mixing solution of ßCP and caryophyllene oxide, as an analog compound, that extracted 77% of the ßCP in 5 min. The electrospun MIM-ßCP can be used to detect and extract the ßCP, applications in the molecular sieve, and biosensor production and may also contribute as an initial methodology to enhance versatile applications in the future, such as in the treatment of skin diseases, filters for extraction, and detection of ßCP to prevent counterfeiting of commercial products, and smart clothing with insect-repellent properties.

2.
Mem Inst Oswaldo Cruz ; 117: e220085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36043597

RESUMEN

BACKGROUND: Malaria is a disease that affects many tropical and subtropical countries, including Brazil. The use of tests for malaria detection is one of the fundamental strategies recommended by the World Health Organization for the control and eradication of the disease. The lack of diagnostic tests leads to an increase in transmission and non-reporting cases. OBJECTIVES: This work described an electrochemical immunosensor for detecting Plasmodium vivax lactate dehydrogenase antigen (Ag-PvLDH). METHODS: The device has developed by immobilising egg yolk IgY antibodies (Ab-PvLDH) on a gold electrode surface using cysteamine as linker. The immunosensor fabrication was followed by differential pulse voltammetry, and contact angle measurements were performed to characterise the modified gold electrode surface. FINDINGS: The results for Ag-PvLDH determination exhibit a linear response at 10-50 µg mL-1 concentration range, with a limit of detection of 455 ng mL-1. The excellent selectivity of the device was confirmed. MAIN CONCLUSIONS: The developed immunosensor showed a good performance, therefore, it can be considered an alternative test to detect malaria caused by P. vivax.


Asunto(s)
Técnicas Biosensibles , Malaria Vivax , Malaria , Antígenos de Protozoos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Oro , Humanos , Inmunoensayo/métodos , L-Lactato Deshidrogenasa , Límite de Detección , Malaria Vivax/diagnóstico , Plasmodium vivax
3.
Mem. Inst. Oswaldo Cruz ; 117: e220085, 2022. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1394476

RESUMEN

BACKGROUND Malaria is a disease that affects many tropical and subtropical countries, including Brazil. The use of tests for malaria detection is one of the fundamental strategies recommended by the World Health Organization for the control and eradication of the disease. The lack of diagnostic tests leads to an increase in transmission and non-reporting cases. OBJECTIVES This work described an electrochemical immunosensor for detecting Plasmodium vivax lactate dehydrogenase antigen (Ag-PvLDH). METHODS The device has developed by immobilising egg yolk IgY antibodies (Ab-PvLDH) on a gold electrode surface using cysteamine as linker. The immunosensor fabrication was followed by differential pulse voltammetry, and contact angle measurements were performed to characterise the modified gold electrode surface. FINDINGS The results for Ag-PvLDH determination exhibit a linear response at 10-50 µg mL-1 concentration range, with a limit of detection of 455 ng mL-1. The excellent selectivity of the device was confirmed. MAIN CONCLUSIONS The developed immunosensor showed a good performance, therefore, it can be considered an alternative test to detect malaria caused by P. vivax.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...