Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Res Sq ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045279

RESUMEN

Deep-brain stimulation (DBS) is a potential novel treatment for memory dysfunction. Current attempts to enhance memory focus on stimulating human hippocampus or entorhinal cortex. However, an alternative strategy is to stimulate brain areas providing modulatory inputs to medial temporal memory-related structures, such as the nucleus accumbens (NAc), which is implicated in enhancing episodic memory encoding. Here, we show that NAc-DBS improves episodic and spatial memory in psychiatric patients. During stimulation, NAc-DBS increased the probability that infrequent (oddball) pictures would be subsequently recollected, relative to periods off stimulation. In a second experiment, NAc-DBS improved performance in a virtual path-integration task. An optimal electrode localization analysis revealed a locus spanning postero-medio-dorsal NAc and medial septum predictive of memory improvement across both tasks. Patient structural connectivity analyses, as well as NAc-DBS-evoked hemodynamic responses in a rat model, converge on a central role for NAc in a hippocampal-mesolimbic circuit regulating encoding into long-term memory. Thus, short-lived, phasic NAc electrical stimulation dynamically improved memory, establishing a critical on-line role for human NAc in episodic memory and providing an empirical basis for considering NAc-DBS in patients with loss of memory function.

2.
Biol Psychiatry ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38141909

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS: Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS: DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS: Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.

4.
Front Aging Neurosci ; 14: 809972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431895

RESUMEN

Background: Current treatments for Alzheimer's disease (AD) modulate global neurotransmission but are neither specific nor anatomically directed. Tailored stimulation of target nuclei will increase treatment efficacy while reducing side effects. We report the results of the first directional deep brain stimulation (dDBS) surgery and treatment of a patient with AD in an attempt to slow the progression of the disease in a woman with multi-domain, amnestic cognitive status. Methods: We aimed to assess the safety of dDBS in patients with AD using the fornix as stimulation target (primary objective) and the clinical impact of the stimulation (secondary objective). In a registered clinical trial, a female patient aged 81 years with a 2-year history of cognitive decline and diagnoses of AD underwent a bilateral dDBS surgery targeting the fornix. Stimulation parameters were set between 3.9 and 7.5 mA, 90 µs, 130 Hz for 24 months, controlling stimulation effects by 18F-fluoro-2-deoxy-D-glucose (18F-FDG) scans (baseline, 12 and 24 months), magnetoencephalography (MEG) and clinical/neuropsychological assessment (baseline, 6, 12, 18, and 24 months). Results: There were no important complications related to the procedure. In general terms, the patient showed cognitive fluctuations over the period, related to attention and executive function patterns, with no meaningful changes in any other cognitive functions, as is shown in the clinical dementia rating scale (CDR = 1) scores over the 24 months. Such stability in neuropsychological scores corresponds to the stability of the brain metabolic function, seen in PET scans. The MEG studies described low functional connectivity at baseline and a subsequent increase in the number of significant connections, mainly in the theta band, at 12 months. Conclusion: The dDBS stimulation in the fornix seems to be a safe treatment for patients in the first stage of AD. Effects on cognition seem to be mild to moderate during the first months of stimulation and return to baseline levels after 24 months, except for verbal fluency. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT03290274], identifier [NCT03290274].

5.
Biol Psychiatry ; 90(10): 701-713, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34134839

RESUMEN

BACKGROUND: Multiple deep brain stimulation (DBS) targets have been proposed for treating intractable obsessive-compulsive disorder (OCD). Here, we investigated whether stimulation effects of different target sites would be mediated by one common or several segregated functional brain networks. METHODS: First, seeding from active electrodes of 4 OCD patient cohorts (N = 50) receiving DBS to anterior limb of the internal capsule or subthalamic nucleus zones, optimal functional connectivity profiles for maximal Yale-Brown Obsessive Compulsive Scale improvements were calculated and cross-validated in leave-one-cohort-out and leave-one-patient-out designs. Second, we derived optimal target-specific connectivity patterns to determine brain regions mutually predictive of clinical outcome for both targets and others predictive for either target alone. Functional connectivity was defined using resting-state functional magnetic resonance imaging data acquired in 1000 healthy participants. RESULTS: While optimal functional connectivity profiles showed both commonalities and differences between target sites, robust cross-predictions of clinical improvements across OCD cohorts and targets suggested a shared network. Connectivity to the anterior cingulate cortex, insula, and precuneus, among other regions, was predictive regardless of stimulation target. Regions with maximal connectivity to these commonly predictive areas included the insula, superior frontal gyrus, anterior cingulate cortex, and anterior thalamus, as well as the original stereotactic targets. CONCLUSIONS: Pinpointing the network modulated by DBS for OCD from different target sites identified a set of brain regions to which DBS electrodes associated with optimal outcomes were functionally connected-regardless of target choice. On these grounds, we establish potential brain areas that could prospectively inform additional or alternative neuromodulation targets for obsessive-compulsive disorder.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Núcleo Subtalámico , Humanos , Cápsula Interna/diagnóstico por imagen , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/terapia
6.
Brain Stimul ; 14(4): 761-770, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33984535

RESUMEN

BACKGROUND: Obsessive-compulsive disorder (OCD) has consistently been linked to abnormal frontostriatal activity. The electrophysiological disruption in this circuit, however, remains to be characterized. OBJECTIVE/HYPOTHESIS: The primary goal of this study was to investigate the neuronal synchronization in OCD patients. We predicted aberrant oscillatory activity in frontal regions compared to healthy control subjects, which would be alleviated by deep brain stimulation (DBS) of the nucleus accumbens (NAc). METHODS: We compared scalp EEG recordings from nine patients with OCD treated with NAc-DBS with recordings from healthy controls, matched for age and gender. Within the patient group, EEG activity was compared with DBS turned off vs. stimulation at typical clinical settings (3.5 V, frequency of stimulation 130 Hz, pulse width 60 µs). In addition, intracranial EEG was recorded directly from depth macroelectrodes in the NAc in four OCD patients. RESULTS: Cross-frequency coupling between the phase of alpha/low beta oscillations and amplitude of high gamma was significantly increased over midline frontal and parietal electrodes in patients when stimulation was turned off, compared to controls. Critically, in patients, beta (16-25 Hz) -gamma (110-166 Hz) phase amplitude coupling source localized to the ventromedial prefrontal cortex, and was reduced when NAc-DBS was active. In contrast, intracranial EEG recordings showed no beta-gamma phase amplitude coupling. The contribution of non-sinusoidal beta waveforms to this coupling are reported. CONCLUSION: We reveal an increased beta-gamma phase amplitude coupling in fronto-central scalp sensors in patients suffering from OCD, compared to healthy controls, which may derive from ventromedial prefrontal regions implicated in OCD and is normalized by DBS of the nucleus accumbens. This aberrant cross-frequency coupling could represent a biomarker of OCD, as well as a target for novel therapeutic approaches.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Fenómenos Electrofisiológicos , Lóbulo Frontal , Humanos , Núcleo Accumbens , Trastorno Obsesivo Compulsivo/terapia
7.
Cereb Cortex ; 31(5): 2742-2758, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33406245

RESUMEN

Inhibitory control is considered a compromised cognitive function in obsessive-compulsive (OCD) patients and likely linked to corticostriatal circuitry disturbances. Here, 9 refractory OCD patients treated with deep brain stimulation (DBS) were evaluated to address the dynamic modulations of large-scale cortical network activity involved in inhibitory control after nucleus accumbens (NAc) stimulation and their relationship with cortical thickness. A comparison of DBS "On/Off" states showed that patients committed fewer errors and exhibited increased intraindividual reaction time variability, resulting in improved goal maintenance abilities and proactive inhibitory control. Visual P3 event-related potentials showed increased amplitudes during Go/NoGo performance. Go and NoGo responses increased cortical activation mainly over the right inferior frontal gyrus and medial frontal gyrus, respectively. Moreover, increased cortical activation in these areas was equally associated with a higher cortical thickness within the prefrontal cortex. These results highlight the critical role of NAc DBS for preferentially modulating the neuronal activity underlying sustained speed responses and inhibitory control in OCD patients and show that it is triggered by reorganizing brain functions to the right prefrontal regions, which may depend on the underlying cortical thinning. Our findings provide updated structural and functional evidence that supports critical dopaminergic-mediated frontal-striatal network interactions in OCD.


Asunto(s)
Grosor de la Corteza Cerebral , Estimulación Encefálica Profunda/métodos , Inhibición Psicológica , Núcleo Accumbens , Trastorno Obsesivo Compulsivo/terapia , Corteza Prefrontal/fisiopatología , Adulto , Variación Biológica Individual , Potenciales Relacionados con Evento P300/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastorno Obsesivo Compulsivo/fisiopatología , Adulto Joven
8.
Mol Psychiatry ; 26(1): 60-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33144712

RESUMEN

A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when "at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication." The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo/terapia , Humanos , Estudios Multicéntricos como Asunto , Trastorno Obsesivo Compulsivo/psicología , Trastorno Obsesivo Compulsivo/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
9.
Front Neurol ; 11: 638, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733364

RESUMEN

The repair of demyelinated lesions is a key objective in multiple sclerosis research. Remyelination fundamentally depends on oligodendrocyte progenitor cells (OPC) reaching the lesion; this is influenced by numerous factors including age, disease progression time, inflammatory activity, and the pool of OPCs available, whether they be NG2 cells or cells derived from neural stem cells. Administering OPCs has been proposed as a potential cell therapy; however, these cells can only be administered directly. This article discusses the potential administration of OPCs encapsulated within hydrogel particles composed of biocompatible biomaterials, via the nose-to-brain pathway. We also discuss conditions for the indication of this therapy, and such related issues as the influence on endogenous remyelination, migration of OPCs to demyelinated areas, and the immune response, given the autoimmune nature of multiple sclerosis. Chitosan and derivatives constitute the most promising biomaterial for this purpose, although these issues must be addressed. In conclusion, this line of research may yield an alternative to the remyelinating drugs currently being studied.

10.
Nat Commun ; 11(1): 3364, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620886

RESUMEN

Multiple surgical targets for treating obsessive-compulsive disorder with deep brain stimulation (DBS) have been proposed. However, different targets may modulate the same neural network responsible for clinical improvement. We analyzed data from four cohorts of patients (N = 50) that underwent DBS to the anterior limb of the internal capsule (ALIC), the nucleus accumbens or the subthalamic nucleus (STN). The same fiber bundle was associated with optimal clinical response in cohorts targeting either structure. This bundle connected frontal regions to the STN. When informing the tract target based on the first cohort, clinical improvements in the second could be significantly predicted, and vice versa. To further confirm results, clinical improvements in eight patients from a third center and six patients from a fourth center were significantly predicted based on their stimulation overlap with this tract. Our results show that connectivity-derived models may inform clinical improvements across DBS targets, surgeons and centers. The identified tract target is openly available in atlas form.


Asunto(s)
Conectoma/psicología , Estimulación Encefálica Profunda/métodos , Modelos Neurológicos , Trastorno Obsesivo Compulsivo/terapia , Adulto , Estimulación Encefálica Profunda/instrumentación , Electrodos Implantados , Femenino , Estudios de Seguimiento , Humanos , Cápsula Interna/fisiopatología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Núcleo Accumbens/fisiopatología , Trastorno Obsesivo Compulsivo/fisiopatología , Trastorno Obsesivo Compulsivo/psicología , Periodo Posoperatorio , Periodo Preoperatorio , Pronóstico , Estudios Retrospectivos , Núcleo Subtalámico/fisiopatología , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Adulto Joven
11.
Front Cell Neurosci ; 13: 204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156392

RESUMEN

Radiotherapy is a highly effective tool for the treatment of brain cancer. However, radiation also causes detrimental effects in the healthy tissue, leading to neurocognitive sequelae that compromise the quality of life of brain cancer patients. Despite the recognition of this serious complication, no satisfactory solutions exist at present. Here we investigated the effects of intranasal administration of human mesenchymal stem cells (hMSCs) as a neuroprotective strategy for cranial radiation in mice. Our results demonstrated that intranasally delivered hMSCs promote radiation-induced brain injury repair, improving neurological function. This intervention confers protection against inflammation, oxidative stress, and neuronal loss. hMSC administration reduces persistent activation of damage-induced c-AMP response element-binding signaling in irradiated brains. Furthermore, hMSC treatment did not compromise the survival of glioma-bearing mice. Our findings encourage the therapeutic use of hMSCs as a non-invasive approach to prevent neurological complications of radiotherapy, improving the quality of life of brain tumor patients.

12.
Dement Geriatr Cogn Disord ; 47(1-2): 19-28, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30630160

RESUMEN

BACKGROUND/AIM: The prevalence of cognitive symptoms in recently diagnosed Parkinson's disease (PD) patients may be as high as 60%. We report a novel deep brain stimulation (DBS) strategy targeting both motor and cognitive symptoms. METHODS: A PD patient diagnosed with mild cognitive impairment underwent DBS surgery targeting the globus pallidus interna (GPi; to treat motor symptoms) and the nucleus basalis of Meynert (NBM; to treat cognitive symptoms) using a single electrode per hemisphere. RESULTS: Compared to baseline, 2-month follow-up after GPi stimulation was associated with motor improvements, whereas partial improvements in cognitive functions were observed 3 months after the addition of NBM stimulation to GPi stimulation. CONCLUSION: This case explores an available alternative for complete DBS treatment in PD, stimulating 2 targets at different frequencies with a single electrode lead.


Asunto(s)
Núcleo Basal de Meynert , Disfunción Cognitiva , Estimulación Encefálica Profunda/métodos , Globo Pálido , Destreza Motora , Anciano , Cognición , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/cirugía , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
13.
Brain Stimul ; 12(3): 724-734, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30670359

RESUMEN

BACKGROUND: Psychiatric conditions currently treated with deep brain stimulation (DBS), such as obsessive-compulsive disorder (OCD), are heterogeneous diseases with different symptomatic dimensions, indicating that fixed neuroanatomical DBS targets for all OCD cases may not be efficacious. OBJECTIVE/HYPOTHESIS: We tested whether the optimal DBS target for OCD is fixed for all patients or whether it is individualized and related to each patient's symptomatic content. Further, we explored if the optimal target can be predicted by combining functional neuroimaging and structural connectivity. METHODS: In a prospective, randomized, double-blinded study in 7 OCD patients, symptomatic content was characterized pre-operatively by clinical interview and OCD symptom-provocation during functional MRI. DBS electrode implantation followed a trajectory placing 4 contacts along a striatal axis (nucleus accumbens to caudate). Patients underwent three-month stimulation periods for each contact (and sham), followed by clinical evaluation. Probabilistic tractography, applied to diffusion-weighted images acquired pre-operatively, was used to study the overlap between projections from the prefrontal areas activated during symptom provocation and the volume of activated tissue of each electrode contact. RESULTS: Six patients were classified responders, with median symptomatic reduction of 50% achieved from each patient's best contact. This was located at the caudate in 4 cases and at the accumbens in 2. Critically, the anatomical locus of the best contact (accumbens or caudate) was related to an index derived by combining functional MRI responses to prevailing symptom provocation and prefronto-cortico-striatal projections defined by probabilistic tractography. CONCLUSION: Our results therefore represent a step towards personalized, content-specific DBS targets for OCD.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Núcleo Accumbens/fisiopatología , Trastorno Obsesivo Compulsivo/terapia , Adulto , Método Doble Ciego , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Núcleo Accumbens/diagnóstico por imagen , Medicina de Precisión/métodos
14.
Neurosurgery ; 85(2): E294-E303, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690487

RESUMEN

BACKGROUND: Although deep brain stimulation (DBS) of the dorsolateral subthalamic nucleus (STN) is a well-established surgical treatment for patients with Parkinson disease (PD), there is still controversy about the relationship between the functional segregation of the STN and clinical outcomes. OBJECTIVE: To correlate motor and neuropsychological (NPS) outcomes with the overlap between the volume of activated tissue (VAT) and the tractography-defined regions within the STN. METHODS: Retrospective study evaluating 13 patients with PD treated with STN-DBS. With the aid of tractography, the STN was segmented into 4 regions: smaSTN (supplementary motor area STN), m1STN (primary motor area STN), mSTN (the sum of the m1STN and the smaSTN segments), and nmSTN (non-motor STN). We computed the overlap coefficients between these STN regions and the patient-specific VAT. The VAT outside of the STN was also calculated. These coefficients were then correlated with motor (Unified Parkinson's Disease Rating Scale, UPDRS III) and NPS outcomes. RESULTS: Stimulation of the mSTN segment was significantly correlated with UPDRS III and bradykinesia improvement. Stimulation of the smaSTN segment, but not the m1STN one, had a positive correlation with bradykinesia improvement. Stimulation of the nmSTN segment was negatively correlated with the improvement in rigidity. Stimulation outside of the STN was correlated with some beneficial NPS effects. CONCLUSION: Stimulation of the tractography-defined motor STN, mainly the smaSTN segment, is positively correlated with motor outcomes, whereas stimulation of the nmSTN is correlated with poor motor outcomes. Further validation of these results might help individualize and optimize targets prior to STN-DBS.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Femenino , Marcadores Fiduciales , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Estudios Retrospectivos , Núcleo Subtalámico/diagnóstico por imagen , Resultado del Tratamiento
15.
J Biomed Mater Res B Appl Biomater ; 107(1): 190-196, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29573127

RESUMEN

Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 190-196, 2019.


Asunto(s)
Astrocitos/metabolismo , Axones/metabolismo , Cuerpo Estriado/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson , Cemento de Policarboxilato , Animales , Astrocitos/patología , Axones/patología , Cuerpo Estriado/patología , Microglía/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Cemento de Policarboxilato/química , Cemento de Policarboxilato/farmacología , Porosidad , Ratas , Ratas Transgénicas , Ratas Wistar , Sustancia Blanca
16.
J Biomed Mater Res B Appl Biomater ; 107(5): 1598-1606, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30307108

RESUMEN

Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds made of hyaluronic acid (HA) biomaterials (BM) could provide a suitable environment to home not only new neurons, but also vessels, glia and neurofilaments. Further, the addition of exogenous cells, such as adipose stem cells (ASC) could increase this effect. Athymic mice were randomly assigned to a one of four group: stroke alone, stroke and implantation of BM, stroke and implantation of BM with ASC, and sham operated animals. Stroke model consisted of middle cerebral artery thrombosis with FeCl3 . After 30 days, animals underwent magnetic resonance imaging (MRI) and were sacrificed. Proliferation and neurogenesis increased at the subventricular zone ipsilateral to the ventricle and neuroblasts, glial, and endothelial cells forming capillaries were seen inside the BM. Those effects increased when ASC were added, while there was less inflammatory reaction. Three-dimensional scaffolds made of HA are able to home newly formed neurons, glia, and endothelial cells permitting the growth neurofilaments inside them. The addition of ASC increase these effects and decrease the inflammatory reaction to the implant. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1598-1606, 2019.


Asunto(s)
Materiales Biocompatibles/química , Ácido Hialurónico/química , Accidente Cerebrovascular/tratamiento farmacológico , Andamios del Tejido/química , Tejido Adiposo/metabolismo , Animales , Materiales Biocompatibles/metabolismo , Encéfalo/metabolismo , Proliferación Celular/efectos de los fármacos , Arterias Cerebrales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Ratones Desnudos , Modelos Animales , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/metabolismo , Porosidad , Propiedades de Superficie , Trombosis/tratamiento farmacológico , Ingeniería de Tejidos
17.
Eur Radiol ; 29(4): 1968-1977, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30324390

RESUMEN

OBJECTIVES: We wished to determine whether tumor morphology descriptors obtained from pretreatment magnetic resonance images and clinical variables could predict survival for glioblastoma patients. METHODS: A cohort of 404 glioblastoma patients (311 discoveries and 93 validations) was used in the study. Pretreatment volumetric postcontrast T1-weighted magnetic resonance images were segmented to obtain the relevant morphological measures. Kaplan-Meier, Cox proportional hazards, correlations, and Harrell's concordance indexes (c-indexes) were used for the statistical analysis. RESULTS: A linear prognostic model based on the outstanding variables (age, contrast-enhanced (CE) rim width, and surface regularity) identified a group of patients with significantly better survival (p < 0.001, HR = 2.57) with high accuracy (discovery c-index = 0.74; validation c-index = 0.77). A similar model applied to totally resected patients was also able to predict survival (p < 0.001, HR = 3.43) with high predictive value (discovery c-index = 0.81; validation c-index = 0.92). Biopsied patients with better survival were well identified (p < 0.001, HR = 7.25) by a model including age and CE volume (c-index = 0.87). CONCLUSIONS: Simple linear models based on small sets of meaningful MRI-based pretreatment morphological features and age predicted survival of glioblastoma patients to a high degree of accuracy. The partition of the population using the extent of resection improved the prognostic value of those measures. KEY POINTS: • A combination of two MRI-based morphological features (CE rim width and surface regularity) and patients' age outperformed previous prognosis scores for glioblastoma. • Prognosis models for homogeneous surgical procedure groups led to even more accurate survival prediction based on Kaplan-Meier analysis and concordance indexes.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/mortalidad , Femenino , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
18.
Eur Radiol ; 29(5): 2729, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30547198

RESUMEN

The original version of this article, published on 15 October 2018, unfortunately contained a mistake. The following correction has therefore been made in the original: The name of Mariano Amo-Salas and the affiliation of Ismael Herruzo were presented incorrectly.

19.
Stereotact Funct Neurosurg ; 96(4): 215-222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30064130

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) and the proper target for chronic cluster headache (CCH) are still subjects of controversy. OBJECTIVES: We present our long-term results of analysis of the target and its structural connectivity. METHODS: Fifteen patients with drug-resistant CCH underwent DBS in coordinates 4 mm lateral to the III ventricular wall and 2 mm behind and 5 mm below the intercommissural point. The clinical parameters recorded were the number of weekly attacks, pain intensity, and duration of the headache. Structural connectivity was studied using 3-T MR diffusion tensor imaging (DTI). RESULTS: All of our patients improved from a mean of 39 attacks/week to 2; pain intensity decreased from 9 to 3 out of 10, and the mean cephalalgia duration decreased from 53 to 8 min. The mean stereotactic coordinates of the effective contact location were 6.1 mm lateral to the midcommissural point and 1.2 mm behind and 4.0 mm below the intercommissural point. DTI analysis showed that this target was connected to tracts and nuclei of the posterior mesencephalic tegmentum, specifically the dorsal longitudinal and mamillotegmental fasciculi. CONCLUSIONS: Our data showed DBS to be a safe and useful procedure for the treatment of drug-resistant CCH; the rate of improvement was higher than those found in other series. Although these are promising results, larger series targeting those fasciculi with a longer follow-up are needed.


Asunto(s)
Cefalalgia Histamínica/terapia , Estimulación Encefálica Profunda/métodos , Subtálamo/fisiopatología , Adulto , Cefalalgia Histamínica/diagnóstico por imagen , Cefalalgia Histamínica/fisiopatología , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Subtálamo/diagnóstico por imagen , Resultado del Tratamiento
20.
J Stroke Cerebrovasc Dis ; 27(9): 2453-2465, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30029838

RESUMEN

INTRODUCTION: Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model. METHODS: A first group of Athymic Nude mice after stroke received a stereotactic injection of hASCs at a concentration of 4 × 104/µL at the penumbra area, a second group without stroke received the same cell concentration, and a third group had only stroke and no cells. After 7, 15, and 30 days, the animals underwent fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging; subsequently, they were sacrificed for histological evaluation (HuNu, GFAP, IBA-1, Ki67, DCX) of the penumbra area and ipsilateral subventricular zone (iSVZ). RESULTS: The in vitro studies found no alterations in the molecular karyotype, clonogenic capacity, and expression of 62 kDa transcription factor and telomerase. Animals implanted with cells showed no adverse events. The implanted cells showed no evidence of proliferation or differentiation. However, there was an increase of capillaries, less astrocytes and microglia, and increased bromodeoxyuridine and doublecortin-positive cells in the iSVZ and in the vicinity of ischemic injury. CONCLUSIONS: These results suggest that hASCs in the implanted dose modulate inflammation, promote endogenous neurogenesis, and do not proliferate or migrate in the brain. These data confirm the safety of cell therapy with hASCs.


Asunto(s)
Isquemia Encefálica/terapia , Trasplante de Células Madre , Tejido Adiposo/citología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Proliferación Celular , Modelos Animales de Enfermedad , Proteína Doblecortina , Gliosis/diagnóstico por imagen , Gliosis/metabolismo , Gliosis/patología , Gliosis/terapia , Humanos , Masculino , Ratones Desnudos , Microglía/metabolismo , Microglía/patología , Actividad Motora , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Neuronas/metabolismo , Neuronas/patología , Distribución Aleatoria , Trasplante de Células Madre/efectos adversos , Células Madre/citología , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...