Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EFSA J ; 22(4): e8719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38650612

RESUMEN

Surveillance data published since 2010, although limited, showed that there is no evidence of zoonotic parasite infection in market quality Atlantic salmon, marine rainbow trout, gilthead seabream, turbot, meagre, Atlantic halibut, common carp and European catfish. No studies were found for greater amberjack, brown trout, African catfish, European eel and pikeperch. Anisakis pegreffii, A. simplex (s. s.) and Cryptocotyle lingua were found in European seabass, Atlantic bluefin tuna and/or cod, and Pseudamphistomum truncatum and Paracoenogonimus ovatus in tench, produced in open offshore cages or flow-through ponds or tanks. It is almost certain that fish produced in closed recirculating aquaculture systems (RAS) or flow-through facilities with filtered water intake and exclusively fed heat-treated feed are free of zoonotic parasites. Since the last EFSA opinion, the UV-press and artificial digestion methods have been developed into ISO standards to detect parasites in fish, while new UV-scanning, optical, molecular and OMICs technologies and methodologies have been developed for the detection, visualisation, isolation and/or identification of zoonotic parasites in fish. Freezing and heating continue to be the most efficient methods to kill parasites in fishery products. High-pressure processing may be suitable for some specific products. Pulsed electric field is a promising technology although further development is needed. Ultrasound treatments were not effective. Traditional dry salting of anchovies successfully inactivated Anisakis. Studies on other traditional processes - air-drying and double salting (brine salting plus dry salting) - suggest that anisakids are successfully inactivated, but more data covering these and other parasites in more fish species and products is required to determine if these processes are always effective. Marinade combinations with anchovies have not effectively inactivated anisakids. Natural products, essential oils and plant extracts, may kill parasites but safety and organoleptic data are lacking. Advanced processing techniques for intelligent gutting and trimming are being developed to remove parasites from fish.

2.
Nat Commun ; 15(1): 664, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253718

RESUMEN

Phage satellites are bacterial genetic elements that co-opt phage machinery for their own dissemination. Here we identify a family of satellites, named Phage-Inducible Chromosomal Minimalist Islands (PICMIs), that are broadly distributed in marine bacteria of the family Vibrionaceae. A typical PICMI is characterized by reduced gene content, does not encode genes for capsid remodelling, and packages its DNA as a concatemer. PICMIs integrate in the bacterial host genome next to the fis regulator, and encode three core proteins necessary for excision and replication. PICMIs are dependent on virulent phage particles to spread to other bacteria, and protect their hosts from other competitive phages without interfering with their helper phage. Thus, our work broadens our understanding of phage satellites and narrows down the minimal number of functions necessary to hijack a tailed phage.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Cápside , Proteínas de la Cápside , Genoma Bacteriano
3.
Environ Microbiol ; 25(8): 1424-1438, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36876921

RESUMEN

Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm. The population of Vibrio crassostreae, a species associated specifically to oysters, was genetically structured into clades of near clonal strains, leading to the isolation of closely related phages forming large modules in phage-bacterial infection networks. For Vibrio chagasii, which blooms in the water column, a lower number of closely related hosts and a higher diversity of isolated phages resulted in small modules in the phage-bacterial infection network. Over time, phage load was correlated with V. chagasii abundance, indicating a role of host blooms in driving phage abundance. Genetic experiments further demonstrated that these phage blooms can generate epigenetic and genetic variability that can counteract host defence systems. These results highlight the importance of considering both the environmental dynamics and the genetic structure of the host when interpreting phage-bacteria networks.


Asunto(s)
Bacteriófagos , Vibrio , Vibrio/genética , Ecosistema , Estructuras Genéticas
4.
Nat Microbiol ; 7(7): 1075-1086, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35760840

RESUMEN

Coevolution between bacteriophages (phages) and their bacterial hosts occurs through changes in resistance and counter-resistance mechanisms. To assess phage-host evolution in wild populations, we isolated 195 Vibrio crassostreae strains and 243 vibriophages during a 5-month time series from an oyster farm and combined these isolates with existing V. crassostreae and phage isolates. Cross-infection studies of 81,926 host-phage pairs delineated a modular network where phages are best at infecting co-occurring hosts, indicating local adaptation. Successful propagation of phage is restricted by the ability to adsorb to closely related bacteria and further constrained by strain-specific defence systems. These defences are highly diverse and predominantly located on mobile genetic elements, and multiple defences are active within a single genome. We further show that epigenetic and genomic modifications enable phage to adapt to bacterial defences and alter host range. Our findings reveal that the evolution of bacterial defences and phage counter-defences is underpinned by frequent genetic exchanges with, and between, mobile genetic elements.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Especificidad del Huésped
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...