Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(19): 12117-12133, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38648373

RESUMEN

Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.


Asunto(s)
Colitis Ulcerosa , Proteínas de la Membrana , Micelas , Nucleotidiltransferasas , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Humanos , Ratones Endogámicos C57BL , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
2.
Biomaterials ; 308: 122531, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38531198

RESUMEN

Radiation therapy (RT) is essential for triple negative breast cancer (TNBC) treatment. However, patients with TNBC continue to experience recurrence after RT. The role of the extracellular matrix (ECM) of irradiated breast tissue in tumor recurrence is still unknown. In this study, we evaluated the structure, molecular composition, and mechanical properties of irradiated murine mammary fat pads (MFPs) and developed ECM hydrogels from decellularized tissues (dECM) to assess the effects of RT-induced ECM changes on breast cancer cell behavior. Irradiated MFPs were characterized by increased ECM deposition and fiber density compared to unirradiated controls, which may provide a platform for cell invasion and proliferation. ECM component changes in collagens I, IV, and VI, and fibronectin were observed following irradiation in both MFPs and dECM hydrogels. Encapsulated TNBC cell proliferation and invasive capacity was enhanced in irradiated dECM hydrogels. In addition, TNBC cells co-cultured with macrophages in irradiated dECM hydrogels induced M2 macrophage polarization and exhibited further increases in proliferation. Our study establishes that the ECM in radiation-damaged sites promotes TNBC invasion and proliferation as well as an immunosuppressive microenvironment. This work represents an important step toward elucidating how changes in the ECM after RT contribute to breast cancer recurrence.


Asunto(s)
Proliferación Celular , Matriz Extracelular , Hidrogeles , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Animales , Matriz Extracelular/metabolismo , Microambiente Tumoral/efectos de la radiación , Hidrogeles/química , Femenino , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Línea Celular Tumoral , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/radioterapia , Macrófagos/metabolismo , Glándulas Mamarias Animales/efectos de la radiación
3.
Bioeng Transl Med ; 9(1): e10595, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193120

RESUMEN

Preeclampsia is a life-threatening pregnancy disorder. Current clinical assays cannot predict the onset of preeclampsia until the late 2nd trimester, which often leads to poor maternal and neonatal outcomes. Here we show that Raman spectroscopy combined with machine learning in pregnant patient plasma enables rapid, highly sensitive maternal metabolome screening that predicts preeclampsia as early as the 1st trimester with >82% accuracy. We identified 12, 15 and 17 statistically significant metabolites in the 1st, 2nd and 3rd trimesters, respectively. Metabolic pathway analysis shows multiple pathways corresponding to amino acids, fatty acids, retinol, and sugars are enriched in the preeclamptic cohort relative to a healthy pregnancy. Leveraging Pearson's correlation analysis, we show for the first time with Raman Spectroscopy that metabolites are associated with several clinical factors, including patients' body mass index, gestational age at delivery, history of preeclampsia, and severity of preeclampsia. We also show that protein quantification alone of proinflammatory cytokines and clinically relevant angiogenic markers are inadequate in identifying at-risk patients. Our findings demonstrate that Raman spectroscopy is a powerful tool that may complement current clinical assays in early diagnosis and in the prognosis of the severity of preeclampsia to ultimately enable comprehensive prenatal care for all patients.

4.
Biomater Sci ; 11(21): 7188-7202, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37750339

RESUMEN

Magnetic hyperthermia has attracted considerable attention for efficient cancer therapy because of its noninvasive nature, deep tissue penetration, and minimal damage to healthy tissues. Herein, we have fused cancer cell membrane fragments with lipids and cloaked them on magnetic nanorings to form targeted Fe nanorings (TF) for tumor-targeted magnetic hyperthermia-induced tumor ablation. In our approach, cell membrane fragments from cancer cells were fused with lipids to form vesicles, which could efficiently encapsulate magnetic nanorings, thereby forming TF. We observed that TF have high tumor uptake via homotypic targeting, where cancer cells take up TF through membrane fusion. Under an external alternating magnetic field (AMF), TF accumulated in the tumors are heated, driving magnetic-hyperthermia-induced tumor cell death. Our in vitro studies show that self-targeting TF efficiently localized in cancer cells and induced cell death with an AMF, which was shown by a live/dead assay. Our findings demonstrate the potential of TF in tumor ablation, thereby making them promising and efficient nanosystems for tumor-targeted theranostics.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Línea Celular Tumoral , Membrana Celular , Fenómenos Magnéticos , Lípidos , Campos Magnéticos
5.
ACS Appl Mater Interfaces ; 15(32): 38185-38200, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37549133

RESUMEN

Preterm birth (PTB) is the leading cause of infant deaths globally. Current clinical measures often fail to identify women who may deliver preterm. Therefore, accurate screening tools are imperative for early prediction of PTB. Here, we show that Raman spectroscopy is a promising tool for studying biological interfaces, and we examine differences in the maternal metabolome of the first trimester plasma of PTB patients and those that delivered at term (healthy). We identified fifteen statistically significant metabolites that are predictive of the onset of PTB. Mass spectrometry metabolomics validates the Raman findings identifying key metabolic pathways that are enriched in PTB. We also show that patient clinical information alone and protein quantification of standard inflammatory cytokines both fail to identify PTB patients. We show for the first time that synergistic integration of Raman and clinical data guided with machine learning results in an unprecedented 85.1% accuracy of risk stratification of PTB in the first trimester that is currently not possible clinically. Correlations between metabolites and clinical features highlight the body mass index and maternal age as contributors of metabolic rewiring. Our findings show that Raman spectral screening may complement current prenatal care for early prediction of PTB, and our approach can be translated to other patient-specific biological interfaces.


Asunto(s)
Nacimiento Prematuro , Embarazo , Humanos , Femenino , Recién Nacido , Nacimiento Prematuro/diagnóstico , Nacimiento Prematuro/prevención & control , Primer Trimestre del Embarazo , Espectrometría Raman , Metabolómica
6.
Anal Chem ; 95(35): 13172-13184, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37605298

RESUMEN

Resistance to clinical therapies remains a major barrier in cancer management. There is a critical need for rapid and highly sensitive diagnostic tools that enable early prediction of treatment response to allow accurate clinical decisions. Here, Raman spectroscopy was employed to monitor changes in key metabolites as early predictors of response in KRAS-mutant colorectal cancer (CRC) cells, HCT116, treated with chemotherapies. We show at the single cell level that HCT116 is resistant to cetuximab (CTX), the first-line treatment in CRC, but this resistance can be overcome with pre-sensitization of cells with oxaliplatin (OX). In combination treatment of CTX + OX, sequential delivery of OX followed by CTX rather than simultaneous administration of drugs was observed to be critical for effective therapy. Our results demonstrated that metabolic changes are well aligned to cellular mechanical changes where Young's modulus decreased after effective treatment, indicating that both changes in mechanical properties and metabolism in cells are likely responsible for cancer proliferation. Raman findings were verified with mass spectrometry (MS) metabolomics, and both platforms showed changes in lipids, nucleic acids, and amino acids as predictors of resistance/response. Finally, key metabolic pathways enriched were identified when cells are resistant to CTX but downregulated with effective treatment. This study highlights that drug-induced metabolic changes both at the single cell level (Raman) and ensemble level (MS) have the potential to identify mechanisms of response to clinical cancer therapies.


Asunto(s)
Antifibrinolíticos , Neoplasias , Humanos , Espectrometría Raman , Metabolómica , Aminoácidos , Cetuximab/farmacología , Oxaliplatino/farmacología
7.
Chem Rev ; 123(13): 8297-8346, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37318957

RESUMEN

Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.


Asunto(s)
Medicina de Precisión , Espectrometría Raman , Medicina de Precisión/métodos , Proteómica/métodos , Metabolómica/métodos , Biomarcadores/metabolismo
8.
Small ; 19(29): e2204293, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965074

RESUMEN

The in vivo dynamics of nanoparticles requires a mechanistic understanding of multiple factors. Here, for the first time, the surprising breakdown of functionalized gold nanostars (F-AuNSs) conjugated with antibodies and 64 Cu radiolabels in vivo and in artificial lysosomal fluid ex vivo, is shown. The short-term biodistribution of F-AuNSs is driven by the route of systemic delivery (intravenous vs intraperitoneal) and long-term fate is controlled by the tissue type in vivo. In vitro studies including endocytosis pathways, intracellular trafficking, and opsonization, are combined with in vivo studies integrating a milieu of spectroscopy and microcopy techniques that show F-AuNSs dynamics is driven by their physicochemical properties and route of delivery. F-AuNSs break down into sub-20 nm broken nanoparticles as early as 7 days postinjection. Martini coarse-grained simulations are performed to support the in vivo findings. Simulations suggest that shape, size, and charge of the broken nanoparticles, and composition of the lipid membrane depicting various tissues govern the interaction of the nanoparticles with the membrane, and the rate of translocation across the membrane to ultimately enable tissue clearance. The fundamental study addresses critical gaps in the knowledge regarding the fate of nanoparticles in vivo that remain a bottleneck in their clinical translation.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oro/química , Distribución Tisular , Nanopartículas/química , Nanopartículas del Metal/química
9.
Biomater Sci ; 11(1): 298-306, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36448579

RESUMEN

In an immunosuppressive tumor microenvironment, tumor-associated macrophages (TAMs) are the most abundant cells displaying pro-tumorigenic M2-like phenotypes, encouraging tumor growth and influencing the development of resistance against conventional therapies. TAMs are highly malleable. They can be repolarized into tumoricidal M1-like cells. In this study, we report the synthesis of novel co-operative immuno-photodynamic nanoparticles involving TAM self-targeting acrylic acid grafted mannan (a polysaccharide) conjugated with the chlorin e6 (Ce6) photosensitizer and then loaded with resiquimod (R848), a toll-like receptor (TLR7/8) agonist. The mannan conjugated Ce6 loaded with R848 (MCR) as bioconjugate nanoparticles demonstrated selective targeting of anti-inflammatory M2-like cells. Using photodynamic therapy they were repolarized to pro-inflammatory M1-like cells with combined effects of reactive oxygen species (ROS)-triggered intracellular signaling and a small-molecule immunostimulant. The MCR also demonstrated a TAM-directed adaptive immune response, inhibited tumor growth, and prevented metastasis. Our results indicate that these MCR nanoparticles can effectively target TAMs and modulate them for cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Mananos , Macrófagos Asociados a Tumores , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
10.
Artículo en Inglés | MEDLINE | ID: mdl-36006784

RESUMEN

Natural killer (NK) cells are an important component of the tumor immunosurveillance; activated NK cells can recognize and directly lyse tumor cells eliciting a potent antitumor immune response. Due to their intrinsic ability to unleash cytotoxicity against tumor cells, NK cell-based adoptive cell therapies have gained rapid clinical significance, and many clinical trials are ongoing. However, priming and activating NK cells, infiltration of activated NK cells in the immunosuppressive tumor microenvironment, and tracking the infiltrated NK cells in the tumors remain a critical challenge. To address these challenges, NK cells have been successfully interfaced with nanomaterials where the morphology, composition, and surface characteristics of nanoparticles (NPs) were leveraged to enable longitudinal tracking of NK cells in tumors or deliver therapeutics to prime NK cells. Distinct from other published reviews, in this tutorial review, we summarize the recent findings in the past decade where NPs were used to label NK cells for immunoimaging or deliver treatment to activate NK cells and induce long-term immunity against tumors. We discuss the NP properties that are key to surmounting the current challenges in NK cells and the different strategies employed to advance NK cells-based diagnostics and therapeutics. We conclude the review with an outlook on future directions in NP-NK cell hybrid interfaces, and overall clinical impact and patient response to such interfaces that need to be addressed to enable their clinical translation.

12.
Bioeng Transl Med ; 5(3): e10165, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005736

RESUMEN

Precise monitoring of specific biomarkers in biological fluids with accurate biodiagnostic sensors is critical for early diagnosis of diseases and subsequent treatment planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed biomarker detection in small volumes (~50 µl) enabled in a microfluidic platform. Here, PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y (NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic beads captured the biomarkers in human serum samples, and gold nanostars (GNSs) "antennas" labeled with peptide biorecognition elements and Raman tags detected the biomarkers via surface-enhanced Raman spectroscopy (SERS). The peptide-conjugated GNS-SERS barcodes were leveraged to achieve high sensitivity, with a limit of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY comparable with commercially available test kits. The innovation of PRADA was also in the regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA by testing cTnI in 11 de-identified cardiac patient samples of various demographics within a 95% confidence interval and high precision profile. We envision low-cost PRADA will have tremendous translational impact and be amenable to resource-limited settings for accurate treatment planning in patients.

13.
Chem Sci ; 11(36): 9863-9874, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34094246

RESUMEN

Rapid and accurate response to targeted therapies is critical to differentiate tumors that are resistant to treatment early in the regimen. In this work, we demonstrate a rapid, noninvasive, and label-free approach to evaluate treatment response to molecular inhibitors in breast cancer (BC) cells with Raman spectroscopy (RS). Metabolic reprogramming in BC was probed with RS and multivariate analysis was applied to classify the cells into responsive or nonresponsive groups as a function of drug dosage, drug type, and cell type. Metabolites identified with RS were then validated with mass spectrometry (MS). We treated triple-negative BC cells with Trametinib, an inhibitor of the extracellular-signal-regulated kinase (ERK) pathway. Changes measured with both RS and MS corresponding to membrane phospholipids, amino acids, lipids and fatty acids indicated that these BC cells were responsive to treatment. Comparatively, minimal metabolic changes were observed post-treatment with Alpelisib, an inhibitor of the mammalian target of rapamycin (mTOR) pathway, indicating treatment resistance. These findings were corroborated with cell viability assay and immunoblotting. We also showed estrogen receptor-positive MCF-7 cells were nonresponsive to Trametinib with minimal metabolic and viability changes. Our findings support that oncometabolites identified with RS will ultimately enable rapid drug screening in patients ensuring patients receive the most effective treatment at the earliest time point.

14.
Trends Biotechnol ; 38(4): 388-403, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31812371

RESUMEN

Dynamic immunoimaging in vivo is crucial in patient-tailored immunotherapies to identify patients who will benefit from immunotherapies, monitor therapeutic efficacy post treatment, and determine alternative strategies for nonresponders. Nanoparticles have played a major role in the immunotherapy landscape. In this review, we summarize recent findings in immunoimaging where smart nanoparticles target, detect, stimulate, and deliver therapeutic dose in vivo. Nanoparticles interfaced with an immunoimaging toolbox enable the use of multiple modalities and achieve depth-resolved whole-body tracking of immunomarkers with high accuracy both before and after treatment. We highlight how functional nanoparticles track T cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), and immune checkpoint receptors (ICRs), and facilitate image-guided interventions.


Asunto(s)
Rastreo Celular/métodos , Oro/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Animales , Células Dendríticas/inmunología , Oro/química , Humanos , Proteínas de Punto de Control Inmunitario/inmunología , Inmunoterapia , Nanopartículas del Metal/química , Neoplasias/inmunología , Neoplasias/terapia , Polímeros de Estímulo Receptivo , Linfocitos T/inmunología , Macrófagos Asociados a Tumores/inmunología
15.
ACS Nano ; 14(1): 651-663, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31851488

RESUMEN

The overexpression of immunomarker programmed cell death protein 1 (PD-1) and engagement of PD-1 to its ligand, PD-L1, are involved in the functional impairment of cluster of differentiation 8+ (CD8+) T cells, contributing to cancer progression. However, heterogeneities in PD-L1 expression and variabilities in biopsy-based assays render current approaches inaccurate in predicting PD-L1 status. Therefore, PD-L1 screening alone is not predictive of patient response to treatment, which motivates us to simultaneously detect multiple immunomarkers engaged in immune modulation. Here, we have developed multimodal probes, immunoactive gold nanostars (IGNs), that accurately detect PD-L1+ tumor cells and CD8+ T cells simultaneously in vivo, surpassing the limitations of current immunoimaging techniques. IGNs integrate the whole-body imaging of positron emission tomography with high sensitivity and multiplexing of Raman spectroscopy, enabling the dynamic tracking of both immunomarkers. IGNs also monitor response to immunotherapies in mice treated with combinatorial PD-L1 and CD137 agonists and distinguish responders from those nonresponsive to treatment. Our results showed a multifunctional nanoscale probe with capabilities that cannot be achieved with either modality alone, allowing multiplexed immunologic tumor profiling critical for predicting early response to immunotherapies.


Asunto(s)
Biomarcadores de Tumor/análisis , Oro/química , Inmunoterapia , Melanoma/diagnóstico por imagen , Melanoma/terapia , Nanopartículas del Metal/química , Imagen Óptica , Animales , Antígeno B7-H1/agonistas , Antígeno B7-H1/análisis , Antígeno B7-H1/genética , Biomarcadores de Tumor/agonistas , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Tamaño de la Partícula , Propiedades de Superficie , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/análisis , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética
16.
Biomater Sci ; 7(4): 1358-1371, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30778445

RESUMEN

The process of cell differentiation in a developing embryo is influenced by numerous factors, including various biological molecules whose presentation varies dramatically over space and time. These morphogens regulate cell fate based on concentration profiles, thus creating discrete populations of cells and ultimately generating large, complex tissues and organs. Recently, several in vitro platforms have attempted to recapitulate the complex presentation of extrinsic signals found in nature. However, it has been a challenge to design versatile platforms that can dynamically control morphogen gradients over extended periods of time. To address some of these issues, we introduce a platform using channels patterned in hydrogels to deliver multiple morphogens to cells in a 3D scaffold, thus creating a spectrum of cell phenotypes based on the resultant morphogen gradients. The diffusion coefficient of a common small molecule morphogen, retinoic acid (RA), was measured within our hydrogel platform using Raman spectroscopy and its diffusion in our platform's geometry was modeled using finite element analysis. The predictive model of spatial gradients was validated in a cell-free hydrogel, and temporal control of morphogen gradients was then demonstrated using a reporter cell line that expresses green fluorescent protein in the presence of RA. Finally, the utility of this approach for regulating cell phenotype was demonstrated by generating opposing morphogen gradients to create a spectrum of mesenchymal stem cell differentiation states.


Asunto(s)
Técnicas Analíticas Microfluídicas , Modelos Biológicos , Morfogénesis , Células Madre/citología , Diferenciación Celular , Células Cultivadas , Humanos
17.
Nanoscale ; 10(27): 13092-13105, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29961778

RESUMEN

In this work, we demonstrate the targeted diagnosis of immunomarker programmed death ligand 1 (PD-L1) and simultaneous detection of epidermal growth factor receptor (EGFR) in breast cancer tumors in vivo using gold nanostars (AuNS) with multiplexed surface enhanced Raman spectroscopy (SERS). Real-time longitudinal tracking with SERS demonstrated maximum accumulation of AuNS occurred 6 h post intravenous (IV) delivery, enabling detection of both biomarkers simultaneously. Raman signal correlating to both PD-L1 and EGFR decreased by ∼30% in control tumors where receptors were pre-blocked prior to AuNS delivery, indicating both the sensitivity and specificity of SERS in distinguishing tumors with different levels of PD-L1 and EGFR expression. Our in vivo study was combined with the first demonstration of ex vivo SERS spatial maps of whole tumor lesions that provided both a qualitative and quantitative assessment of biomarker status with near cellular-level resolution. High resolution SERS maps also provided an overview of AuNS distribution in tumors which correlated well with the vascular density. Mass spectrometry showed AuNS accumulation in tumor and liver, and clearance via spleen, and electron microscopy revealed AuNS were endocytosed in tumors, Kupffer cells in the liver, and macrophages in the spleen. This study demonstrates that SERS-based diagnosis mediated by AuNS provides an accurate measure of multiple biomarkers both in vivo and ex vivo, which will ultimately enable a clinically-translatable platform for patient-tailored immunotherapies and combination treatments.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Oro , Nanopartículas del Metal , Espectrometría Raman , Antígeno B7-H1/análisis , Receptores ErbB/análisis , Humanos , Sensibilidad y Especificidad
18.
ACS Omega ; 2(7): 3583-3594, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28782050

RESUMEN

In this study, we demonstrate the theranostic capability of actively targeted, site-specific multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. By utilizing multiplexed surface-enhanced Raman scattering (SERS) imaging, enabled by the narrow peak widths of Raman signatures, we simultaneously targeted immune checkpoint receptor programmed death ligand 1 (PDL1) and the epidermal growth factor receptor (EGFR) overexpressed in TNBC cells. A 1:1 mixture of MGNs functionalized with anti-PDL1 antibodies and Raman tag 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) and MGNs functionalized with anti-EGFR antibodies and Raman tag para-mercaptobenzoic acid (pMBA) were incubated with the cells. SERS imaging revealed a cellular traffic map of MGN localization by surface binding and receptor-mediated endocytosis, enabling targeted diagnosis of both biomarkers. Furthermore, cells incubated with anti-EGFR-pMBA-MGNs and illuminated with an 808 nm laser for 15 min at 4.7 W/cm2 exhibited photothermal cell death only within the laser spot (indicated by live/dead cell fluorescence assay). Therefore, this study not only provides an optical imaging platform that can track immunomarkers with spatiotemporal control but also demonstrates an externally controlled light-triggered therapeutic approach enabling receptor-specific treatment with biocompatible theranostic nanoprobes.

19.
Nanoscale ; 9(33): 12005-12013, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28795740

RESUMEN

In this study, ultrafast transient absorption spectroscopy (TAS) is utilized to examine the excited-state dynamics in methylammonium lead iodide/bromide (MAPb(I1-xBrx)3) perovskites as a function of bromide content. TAS spectral behavior reveals characteristic lifetimes for thermalization, recombination, and charge carrier injection of MAPb(I1-xBrx)3 from x = 0 to 0.3 infiltrated in mesoporous titania films. Carrier recombination and charge injection lifetimes demonstrated a discernable increase with Br content likely because high carrier populations are supported by the higher density of vacant electronic states in mixed-halide perovskites due to the increased capacity of the conduction band. However, we observe for the first time that carrier thermalization lifetimes significantly decrease with increasing Br. This suggests that the shift in crystal structure from tetragonal towards pseudocubic accelerates carrier cooling, resulting in the relief of the hot phonon bottleneck. Furthermore, the stabilized MAPb(I1-xBrx)3 samples exhibit a lower Burstein-Moss shift of 0.07-0.08 eV compared to pure MAPbI3 (0.12 eV). Our results provide evidence that Br inclusion contributes to a broadening of the parabolic conduction band and to improvement in electron-phonon coupling and phonon propagation in the lattice.

20.
Nanoscale ; 9(4): 1475-1483, 2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28067394

RESUMEN

In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...