Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 10: 1141623, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37753165

RESUMEN

Background: Abdominal Aortic Aneurysm (AAA) is a balloon-like dilatation that can be life-threatening if not treated. Fabricating patient-specific AAA models can be beneficial for in-vitro investigations of hemodynamics, as well as for pre-surgical planning and training, testing the effectiveness of different interventions, or developing new surgical procedures. The current direct additive manufacturing techniques cannot simultaneously ensure the flexibility and transparency of models required by some applications. Therefore, casting techniques are presented to overcome these limitations and make the manufactured models suitable for in-vitro hemodynamic investigations, such as particle image velocimetry (PIV) measurements or medical imaging. Methods: Two complex patient-specific AAA geometries were considered, and the related 3D models were fabricated through material casting. In particular, two casting approaches, i.e. lost molds and lost core casting, were investigated and tested to manufacture the deformable AAA models. The manufactured models were acquired by magnetic resonance, computed tomography (CT), ultrasound imaging, and PIV. In particular, CT scans were segmented to generate a volumetric reconstruction for each manufactured model that was compared to a reference model to assess the accuracy of the manufacturing process. Results: Both lost molds and lost core casting techniques were successful in the manufacturing of the models. The lost molds casting allowed a high-level surface finish in the final 3D model. In this first case, the average signed distance between the manufactured model and the reference was (-0.2±0.2) mm. However, this approach was more expensive and time-consuming. On the other hand, the lost core casting was more affordable and allowed the reuse of the external molds to fabricate multiple copies of the same AAA model. In this second case, the average signed distance between the manufactured model and the reference was (0.1±0.6) mm. However, the final model's surface finish quality was poorer compared to the model obtained by lost molds casting as the sealing of the outer molds was not as firm as the other casting technique. Conclusions: Both lost molds and lost core casting techniques can be used for manufacturing patient-specific deformable AAA models suitable for hemodynamic investigations, including medical imaging and PIV.

2.
Front Bioeng Biotechnol ; 11: 1096196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793441

RESUMEN

The analysis of mechanobiology of arterial tissues remains an important topic of research for cardiovascular pathologies evaluation. In the current state of the art, the gold standard to characterize the tissue mechanical behavior is represented by experimental tests, requiring the harvesting of ex-vivo specimens. In recent years though, image-based techniques for the in vivo estimation of arterial tissue stiffness were presented. The aim of this study is to define a new approach to provide local distribution of arterial stiffness, estimated as the linearized Young's Modulus, based on the knowledge of in vivo patient-specific imaging data. In particular, the strain and stress are estimated with sectional contour length ratios and a Laplace hypothesis/inverse engineering approach, respectively, and then used to calculate the Young's Modulus. After describing the method, this was validated by using a set of Finite Element simulations as input. In particular, idealized cylinder and elbow shapes plus a single patient-specific geometry were simulated. Different stiffness distributions were tested for the simulated patient-specific case. After the validation from Finite Element data, the method was then applied to patient-specific ECG-gated Computed Tomography data by also introducing a mesh morphing approach to map the aortic surface along the cardiac phases. The validation process revealed satisfactory results. In the simulated patient-specific case, root mean square percentage errors below 10% for the homogeneous distribution and below 20% for proximal/distal distribution of stiffness. The method was then successfully used on the three ECG-gated patient-specific cases. The resulting distributions of stiffness exhibited significant heterogeneity, nevertheless the resulting Young's moduli were always contained within the 1-3 MPa range, which is in line with literature.

3.
IEEE Trans Biomed Eng ; 70(5): 1651-1661, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36423318

RESUMEN

GOAL: This work presents the development of a Hybrid Mock Circulatory Loop (HMCL) to simulate hemodynamics at patient-specific level in terms of both 3D geometry and inlet/outlet boundary conditions. METHODS: Clinical data have been processed to define the morphological and functional patient-specific settings. A piston pump is used to impose a parametric flow rate profile at the inlet of the hemodynamic circuit. In order to guarantee the physiological pressure and flow conditions, a specific hybrid chamber system including a real-time control has been designed and implemented. The developed system was validated firstly in a single outlet branch model and, secondly, on a 3D printed patient-specific multi-branch phantom. Finally, for the 3D phantom, the outlet flow profiles were compared with the corresponding in-vivo flow data. RESULTS: Results showed that the root mean squared error between the prescribed setpoint and the measured pressures was always below 3 mmHg (about 2.5%) for all cases. The obtained flow profiles for the patient-specific model were in agreement with the related functional in-vivo data. SIGNIFICANCE: The capability to reproduce physiological hemodynamics condition, with high-fidelity, plays a significant role in the cardiovascular research. The developed platform can be used to assess the performances of cardiovascular devices, to validate numerical simulations, and to test imaging systems.


Asunto(s)
Hidrodinámica , Modelos Cardiovasculares , Humanos , Hemodinámica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...