Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(1): 102851, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354083

RESUMEN

Applying mechanical forces to tissues helps to understand morphogenesis and homeostasis. Additionally, recording the dynamics of living tissues under mechanical constraints is needed to explore tissue biomechanics. Here, we present a protocol to 3D-print a StretchCo device and use it to apply uniaxial mechanical stress on the Drosophila pupal dorsal thorax epithelium. We describe steps for 3D printing, polydimethylsiloxane (PDMS) strip cutting, and glue preparation. We detail procedures for PDMS strip mounting, tissue compaction, and live imaging upon force application. For additional details on the use and execution of this protocol, please refer to Cachoux et al. (2023)1 from which the StretchCo machine has been derived.


Asunto(s)
Dimetilpolisiloxanos , Drosophila , Animales , Epitelio , Morfogénesis , Fenómenos Biomecánicos , Estrés Mecánico
2.
Dev Cell ; 58(24): 3048-3063.e6, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38056452

RESUMEN

Tissue homeostasis relies on rewiring of stem cell transcriptional programs into those of differentiated cells. Here, we investigate changes in chromatin occurring in a bipotent adult stem cells. Combining mapping of chromatin-associated factors with statistical modeling, we identify genome-wide transitions during differentiation in the adult Drosophila intestinal stem cell (ISC) lineage. Active, stem-cell-enriched genes transition to a repressive heterochromatin protein-1-enriched state more prominently in enteroendocrine cells (EEs) than in enterocytes (ECs), in which the histone H1-enriched Black state is preeminent. In contrast, terminal differentiation genes associated with metabolic functions follow a common path from a repressive, primed, histone H1-enriched Black state in ISCs to active chromatin states in EE and EC cells. Furthermore, we find that lineage priming has an important function in adult ISCs, and we identify histone H1 as a mediator of this process. These data define underlying principles of chromatin changes during adult multipotent stem cell differentiation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Linaje de la Célula , Intestinos , Diferenciación Celular/genética
3.
Cell Rep ; 42(12): 113485, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38032794

RESUMEN

During development and aging, genome mutation leading to loss of heterozygosity (LOH) can uncover recessive phenotypes within tissue compartments. This phenomenon occurs in normal human tissues and is prevalent in pathological genetic conditions and cancers. While studies in yeast have defined DNA repair mechanisms that can promote LOH, the predominant pathways and environmental triggers in somatic tissues of multicellular organisms are not well understood. Here, we investigate mechanisms underlying LOH in intestinal stem cells in Drosophila. Infection with the pathogenic bacteria, Erwinia carotovora carotovora 15, but not Pseudomonas entomophila, increases LOH frequency. Using whole genome sequencing of somatic LOH events, we demonstrate that they arise primarily via mitotic recombination. Molecular features and genetic evidence argue against a break-induced replication mechanism and instead support cross-over via double Holliday junction-based repair. This study provides a mechanistic understanding of mitotic recombination, an important mediator of LOH, and its effects on stem cells in vivo.


Asunto(s)
Drosophila , Recombinación Genética , Animales , Humanos , Drosophila/genética , Recombinación Genética/genética , Reparación del ADN , Pérdida de Heterocigocidad , Saccharomyces cerevisiae/genética , Células Madre
4.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399062

RESUMEN

While testing for genome instability in Drosophila as reported by unscheduled upregulation of UAS-GFP in cells that co-express GAL80 and GAL4, we noticed that, as expected, background levels were low in most developing tissues. However, GFP-positive clones were frequent in the larval brain. Most of these clones originated from central brain neural stem cells. Using imaging-based approaches and genome sequencing, we show that these unscheduled clones do not result from chromosome loss or mutations in GAL80. We have named this phenomenon 'Illuminati'. Illuminati is strongly enhanced in brat tumors and is also sensitive to environmental conditions such as food content and temperature. Illuminati is suppressed by Su(var)2-10, but it is not significantly affected by several modifiers of position effect variegation or Gal4::UAS variegation. We conclude that Illuminati identifies a previously unknown type of functional instability that may have important implications in development and disease.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Drosophila/genética , Drosophila melanogaster/genética , Mutación/genética , Expresión Génica , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética
5.
Curr Biol ; 32(17): R931-R934, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36099901

RESUMEN

Epidermal growth factor receptor signaling is central to cell proliferation, growth, and survival and is often deregulated in cancers. A new study links downstream effectors of this receptor to stem cell growth via mitochondrial biogenesis and metabolic reprogramming.


Asunto(s)
Biogénesis de Organelos , Células Madre , Proliferación Celular , Receptores ErbB , Transducción de Señal
7.
Curr Opin Cell Biol ; 73: 58-68, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34217969

RESUMEN

Stem cells have essential functions in the development and maintenance of our organs. Improper regulation of adult stem cells and tissue homeostasis can result in cancers and age-dependent decline. Therefore, understanding how tissue-specific stem cells can accurately renew tissues is an important aim of regenerative medicine. The Drosophila midgut harbors multipotent adult stem cells that are essential to renew the gut in homeostatic conditions and upon stress-induced regeneration. It is now a widely used model system to decipher regulatory mechanisms of stem cell biology. Here, we review recent findings on how adult intestinal stem cells differentiate, interact with their environment, and change during aging.


Asunto(s)
Células Madre Adultas , Drosophila , Animales , Drosophila melanogaster , Homeostasis , Intestinos , Modelos Biológicos , Células Madre
8.
Genome Res ; 31(8): 1419-1432, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34168010

RESUMEN

Spontaneous mutations can alter tissue dynamics and lead to cancer initiation. Although large-scale sequencing projects have illuminated processes that influence somatic mutation and subsequent tumor evolution, the mutational dynamics operating in the very early stages of cancer development are currently not well understood. To explore mutational processes in the early stages of cancer evolution, we exploited neoplasia arising spontaneously in the Drosophila intestine. Analysing whole-genome sequencing data with a dedicated bioinformatic pipeline, we found neoplasia formation to be driven largely through the inactivation of Notch by structural variants, many of which involve highly complex genomic rearrangements. The genome-wide mutational burden in neoplasia was found to be similar to that of several human cancers. Finally, we identified genomic features associated with spontaneous mutation, and defined the evolutionary dynamics and mutational landscape operating within intestinal neoplasia over the short lifespan of the adult fly. Our findings provide unique insight into mutational dynamics operating over a short timescale in the genetic model system, Drosophila melanogaster.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/genética , Genómica , Intestinos , Mutación , Células Madre
9.
Nat Cell Biol ; 23(6): 580-582, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040165
10.
EMBO J ; 40(9): e106388, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33634906

RESUMEN

Transposable elements (TEs) play a significant role in evolution, contributing to genetic variation. However, TE mobilization in somatic cells is not well understood. Here, we address the prevalence of transposition in a somatic tissue, exploiting the Drosophila midgut as a model. Using whole-genome sequencing of in vivo clonally expanded gut tissue, we have mapped hundreds of high-confidence somatic TE integration sites genome-wide. We show that somatic retrotransposon insertions are associated with inactivation of the tumor suppressor Notch, likely contributing to neoplasia formation. Moreover, applying Oxford Nanopore long-read sequencing technology we provide evidence for tissue-specific differences in retrotransposition. Comparing somatic TE insertional activity with transcriptomic and small RNA sequencing data, we demonstrate that transposon mobility cannot be simply predicted by whole tissue TE expression levels or by small RNA pathway activity. Finally, we reveal that somatic TE insertions in the adult fly intestine are enriched in genic regions and in transcriptionally active chromatin. Together, our findings provide clear evidence of ongoing somatic transposition in Drosophila and delineate previously unknown features underlying somatic TE mobility in vivo.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neoplasias Intestinales/genética , Receptores Notch/genética , Animales , Evolución Clonal , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Masculino , Especificidad de Órganos , Recombinación Genética , Análisis de Secuencia de ARN/métodos , Secuenciación Completa del Genoma
11.
Artículo en Inglés | MEDLINE | ID: mdl-31932318

RESUMEN

Adult stem cells fuel tissue homeostasis and regeneration through their unique ability to self-renew and differentiate into specialized cells. Thus, their DNA provides instructions that impact the tissue as a whole. Since DNA is not an inert molecule, but rather dynamic, interacting with a myriad of chemical and physical factors, it encounters damage from both endogenous and exogenous sources. Damage to DNA introduces deviations from its normal intact structure and, if left unrepaired, may result in a genetic mutation. In turn, mutant genomes of stem and progenitor cells are inherited in cells of the lineage, thus eroding the genetic information that maintains homeostasis of the somatic cell population. Errors arising in stem and progenitor cells will have a substantially larger impact on the tissue in which they reside than errors occurring in postmitotic differentiated cells. Therefore, maintaining the integrity of genomic DNA within our stem cells is essential to protect the instructions necessary for rebuilding healthy tissues during homeostatic renewal. In this review, we will first discuss DNA damage arising in stem cells and cell- and tissue-intrinsic mechanisms that protect against harmful effects of this damage. Secondly, we will examine how erroneous DNA repair and persistent DNA damage in stem and progenitor cells impact stem cells and tissues in the context of cancer initiation and aging. Finally, we will discuss the use of invertebrate and vertebrate model systems to address unanswered questions on the role that DNA damage and mutation may play in aging and precancerous conditions.


Asunto(s)
Envejecimiento/genética , Daño del ADN , Genoma , Neoplasias/patología , Células Madre , Animales , Humanos , Mutación
12.
Dev Cell ; 49(4): 556-573.e6, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31112698

RESUMEN

Chromatin remodeling accompanies differentiation, however, its role in self-renewal is less well understood. We report that in Drosophila, the chromatin remodeler Kismet/CHD7/CHD8 limits intestinal stem cell (ISC) number and proliferation without affecting differentiation. Stem-cell-specific whole-genome profiling of Kismet revealed its enrichment at transcriptionally active regions bound by RNA polymerase II and Brahma, its recruitment to the transcription start site of activated genes and developmental enhancers and its depletion from regions bound by Polycomb, Histone H1, and heterochromatin Protein 1. We demonstrate that the Trithorax-related/MLL3/4 chromatin modifier regulates ISC proliferation, colocalizes extensively with Kismet throughout the ISC genome, and co-regulates genes in ISCs, including Cbl, a negative regulator of Epidermal Growth Factor Receptor (EGFR). Loss of kismet or trr leads to elevated levels of EGFR protein and signaling, thereby promoting ISC self-renewal. We propose that Kismet with Trr establishes a chromatin state that limits EGFR proliferative signaling, preventing tumor-like stem cell overgrowths.


Asunto(s)
Cromatina/metabolismo , ADN Helicasas/metabolismo , Proteínas de Drosophila/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Ensamble y Desensamble de Cromatina/fisiología , ADN Helicasas/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Proteínas de Homeodominio/fisiología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
13.
PLoS Genet ; 14(11): e1007773, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30452449

RESUMEN

Precise regulation of stem cell self-renewal and differentiation properties is essential for tissue homeostasis. Using the adult Drosophila intestine to study molecular mechanisms controlling stem cell properties, we identify the gene split-ends (spen) in a genetic screen as a novel regulator of intestinal stem cell fate (ISC). Spen family genes encode conserved RNA recognition motif-containing proteins that are reported to have roles in RNA splicing and transcriptional regulation. We demonstrate that spen acts at multiple points in the ISC lineage with an ISC-intrinsic function in controlling early commitment events of the stem cells and functions in terminally differentiated cells to further limit the proliferation of ISCs. Using two-color cell sorting of stem cells and their daughters, we characterize spen-dependent changes in RNA abundance and exon usage and find potential key regulators downstream of spen. Our work identifies spen as an important regulator of adult stem cells in the Drosophila intestine, provides new insight to Spen-family protein functions, and may also shed light on Spen's mode of action in other developmental contexts.


Asunto(s)
Células Madre Adultas/citología , Autorrenovación de las Células/genética , Autorrenovación de las Células/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Células Madre Adultas/metabolismo , Animales , Animales Modificados Genéticamente , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas de Homeodominio/antagonistas & inhibidores , Intestinos/citología , Masculino , Modelos Biológicos , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Interferencia de ARN , Proteínas de Unión al ARN , Receptores Notch/metabolismo , Transducción de Señal
14.
Curr Opin Cell Biol ; 48: 97-105, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28719867

RESUMEN

Adult somatic stem cells facilitate tissue homeostasis throughout the life of the organism. The mechanisms controlling stem cell activity are under intense scrutiny, with the aims of elucidating how they mediate tissue homeostasis, contribute to age-related decline of adult tissues, and promote tumorigenesis. Recently, the use of model systems such as the Drosophila intestine has enriched our understanding of how stem cells integrate local and systemic signals to maintain tissue and organs function in physiological conditions of homeostasis or after damage. Here we highlight recent advances made in this model allowing a better understanding of stem cell lineage decisions, their regulation by epithelial and intra-organ cues, and their altered activity during aging.


Asunto(s)
Envejecimiento , Drosophila/fisiología , Homeostasis , Intestinos/fisiología , Células Madre Adultas/fisiología , Envejecimiento/fisiología , Animales , Linaje de la Célula , Daño del ADN , Drosophila/citología , Drosophila/crecimiento & desarrollo , Humanos , Intestinos/citología , Modelos Animales , Modelos Biológicos
15.
EMBO J ; 36(13): 1928-1945, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28533229

RESUMEN

How terminal cell fates are specified in dynamically renewing adult tissues is not well understood. Here we explore terminal cell fate establishment during homeostasis using the enteroendocrine cells (EEs) of the adult Drosophila midgut as a paradigm. Our data argue against the existence of local feedback signals, and we identify Numb as an intrinsic regulator of EE fate. Our data further indicate that Numb, with alpha-adaptin, acts upstream or in parallel of known regulators of EE fate to limit Notch signaling, thereby facilitating EE fate acquisition. We find that Numb is regulated in part through its asymmetric and symmetric distribution during stem cell divisions; however, its de novo synthesis is also required during the differentiation of the EE cell. Thus, this work identifies Numb as a crucial factor for cell fate choice in the adult Drosophila intestine. Furthermore, our findings demonstrate that cell-intrinsic control mechanisms of terminal cell fate acquisition can result in a balanced tissue-wide production of terminally differentiated cell types.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Enteroendocrinas/fisiología , Regulación de la Expresión Génica , Hormonas Juveniles/metabolismo , Animales , Intestinos/fisiología , Transducción de Señal
16.
Fly (Austin) ; 11(2): 121-128, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-27834607

RESUMEN

Somatic recombination is essential to protect genomes of somatic cells from DNA damage but it also has important clinical implications, as it is a driving force of tumorigenesis leading to inactivation of tumor suppressor genes. Despite this importance, our knowledge about somatic recombination in adult tissues remains very limited. Our recent work, using the Drosophila adult midgut has demonstrated that spontaneous events of mitotic recombination accumulate in aging adult intestinal stem cells and result in frequent loss of heterozygosity (LOH). In this Extra View article, we provide further data supporting long-track chromosome LOH and discuss potential mechanisms involved in the process. In addition, we further discuss relevant questions surrounding somatic recombination and how the mechanisms and factors influencing somatic recombination in adult tissues can be explored using the Drosophila midgut model.


Asunto(s)
Células Madre Adultas/citología , Drosophila/citología , Mitosis , Recombinación Genética , Animales , Evolución Clonal , Intestinos/citología , Pérdida de Heterocigocidad , Modelos Animales
17.
Nat Commun ; 6: 8894, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26573328

RESUMEN

Aneuploidy is associated with a variety of diseases such as cancer and microcephaly. Although many studies have addressed the consequences of a non-euploid genome in cells, little is known about their overall consequences in tissue and organism development. Here we use two different mutant conditions to address the consequences of aneuploidy during tissue development and homeostasis in Drosophila. We show that aneuploidy causes brain size reduction due to a decrease in the number of proliferative neural stem cells (NSCs), but not through apoptosis. Instead, aneuploid NSCs present an extended G1 phase, which leads to cell cycle exit and premature differentiation. Moreover, we show that this response to aneuploidy is also present in adult intestinal stem cells but not in the wing disc. Our work highlights a neural and intestine stem cell-specific response to aneuploidy, which prevents their proliferation and expansion.


Asunto(s)
Aneuploidia , Encéfalo/embriología , Diferenciación Celular/genética , Fase G1/genética , Intestinos/citología , Células-Madre Neurales/metabolismo , Animales , Encéfalo/metabolismo , Proliferación Celular/genética , Drosophila , Inmunohistoquímica , Células-Madre Neurales/citología , Tamaño de los Órganos , Células Madre/citología , Células Madre/metabolismo , Alas de Animales/citología
18.
Cell Stem Cell ; 17(6): 663-674, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26607382

RESUMEN

Adult stem cells may acquire mutations that modify cellular behavior, leading to functional declines in homeostasis or providing a competitive advantage resulting in premalignancy. However, the frequency, phenotypic impact, and mechanisms underlying spontaneous mutagenesis during aging are unclear. Here, we report two mechanisms of genome instability in adult Drosophila intestinal stem cells (ISCs) that cause phenotypic alterations in the aging intestine. First, we found frequent loss of heterozygosity arising from mitotic homologous recombination in ISCs that results in genetic mosaicism. Second, somatic deletion of DNA sequences and large structural rearrangements, resembling those described in cancers and congenital diseases, frequently result in gene inactivation. Such modifications induced somatic inactivation of the X-linked tumor suppressor Notch in ISCs, leading to spontaneous neoplasias in wild-type males. Together, our findings reveal frequent genomic modification in adult stem cells and show that somatic genetic mosaicism has important functional consequences on aging tissues.


Asunto(s)
Células Madre Adultas/citología , Envejecimiento , Inestabilidad Genómica , Intestinos/citología , Mosaicismo , Mutación , Animales , Drosophila melanogaster , Femenino , Eliminación de Gen , Masculino , Mitosis , Receptores Notch/metabolismo , Recombinación Genética , Transgenes
19.
Dev Cell ; 26(3): 250-65, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23948252

RESUMEN

Abscission is the last step of cytokinesis that physically separates the cytoplasm of sister cells. As the final stage of cell division, abscission is poorly characterized during animal development. Here, we show that Aurora B and Survivin regulate the number of germ cells in each Drosophila egg chamber by inhibiting abscission during differentiation. This inhibition is mediated by an Aurora B-dependent phosphorylation of Cyclin B, as a phosphomimic form of Cyclin B rescues premature abscission caused by a loss of function of Aurora B. We show that Cyclin B localizes at the cytokinesis bridge, where it promotes abscission. We propose that mutual inhibitions between Aurora B and Cyclin B regulate the duration of abscission and thereby the number of sister cells in each cyst. Finally, we show that inhibitions of Aurora B and Cyclin-dependent kinase 1 activity in vertebrate cells also have opposite effects on the timing of abscission, suggesting a possible conservation of these mechanisms.


Asunto(s)
Ciclina B1/metabolismo , Ciclina B/metabolismo , Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Células Germinativas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Diferenciación Celular/fisiología , Ciclina B/genética , Ciclina B1/genética , Ciclina B2/genética , Ciclina B2/metabolismo , Drosophila , Proteínas de Drosophila/genética , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Células Germinativas/citología , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Masculino , Ratones , Ratones Noqueados , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Survivin , Transfección , Vertebrados
20.
Med Sci (Paris) ; 29(1): 75-81, 2013 Jan.
Artículo en Francés | MEDLINE | ID: mdl-23351697

RESUMEN

Constant renewal of cells occurs in most tissues throughout the adult lifetime and is insured by the activity of resident stem cells. Recent work has demonstrated the presence of adult stem cells in the Drosophila intestine and consequently, the Drosophila intestine has become a powerful model to understand adult stem cells in vivo. In this review, we summarize our current understanding of the mechanisms controlling cell fate decisions of the intestinal stem cells with a particular focus on the role of the Notch pathway in this process. We also summarize what is known about proliferation control of the intestinal stem cells, which is crucial to maintain tissue homeostasis during normal and environmentally stressful conditions.


Asunto(s)
Células Madre Adultas , Drosophila melanogaster/citología , Animales , Proliferación Celular , Homeostasis , Intestinos/citología , Modelos Animales , Receptores Notch
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...