Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Oncol ; 13: 1156812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287908

RESUMEN

Introduction: Surgical resection remains the first-line treatment for gliomas. Several fluorescent dyes are currently in use to augment intraoperative tumor visualization, but information on their comparative effectiveness is lacking. We performed systematic assessment of fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), and indocyanine green (ICG) fluorescence in various glioma models using advanced fluorescence imaging techniques. Methods: Four glioma models were used: GL261 (high-grade model), GB3 (low-grade model), and an in utero electroporation model with and without red fluorescence protein (IUE +RFP and IUE -RFP, respectively) (intermediate-to-low-grade model). Animals underwent 5-ALA, FNa, and ICG injections and craniectomy. Brain tissue samples underwent fluorescent imaging using a wide-field operative microscope and a benchtop confocal microscope and were submitted for histologic analysis. Results: Our systematic analysis showed that wide-field imaging of highly malignant gliomas is equally efficient with 5-ALA, FNa, and ICG, although FNa is associated with more false-positive staining of the normal brain. In low-grade gliomas, wide-field imaging cannot detect ICG staining, can detect FNa in only 50% of specimens, and is not sensitive enough for PpIX detection. With confocal imaging of low-intermediate grade glioma models, PpIX outperformed FNa. Discussion: Overall, compared to wide-field imaging, confocal microscopy significantly improved diagnostic accuracy and was better at detecting low concentrations of PpIX and FNa, resulting in improved tumor delineation. Neither PpIX, FNa, nor ICG delineated all tumor boundaries in studied tumor models, which emphasizes the need for novel visualization technologies and molecular probes to guide glioma resection. Simultaneous administration of 5-ALA and FNa with use of cellular-resolution imaging modalities may provide additional information for margin detection and may facilitate maximal glioma resection.

2.
J Neurosurg ; 138(3): 732-739, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35932275

RESUMEN

OBJECTIVE: Microsurgical training remains indispensable to master cerebrovascular bypass procedures, but simulation models for training that accurately replicate microanastomosis in narrow, deep-operating corridors are lacking. Seven simulation bypass scenarios were developed that included head models in various surgical positions with premade approaches, simulating the restrictions of the surgical corridors and hand positions for microvascular bypass training. This study describes these models and assesses their validity. METHODS: Simulation models were created using 3D printing of the skull with a designed craniotomy. Brain and external soft tissues were cast using a silicone molding technique from the clay-sculptured prototypes. The 7 simulation scenarios included: 1) temporal craniotomy for a superficial temporal artery (STA)-middle cerebral artery (MCA) bypass using the M4 branch of the MCA; 2) pterional craniotomy and transsylvian approach for STA-M2 bypass; 3) bifrontal craniotomy and interhemispheric approach for side-to-side bypass using the A3 branches of the anterior cerebral artery; 4) far lateral craniotomy and transcerebellomedullary approach for a posterior inferior cerebellar artery (PICA)-PICA bypass or 5) PICA reanastomosis; 6) orbitozygomatic craniotomy and transsylvian-subtemporal approach for a posterior cerebral artery bypass; and 7) extended retrosigmoid craniotomy and transcerebellopontine approach for an occipital artery-anterior inferior cerebellar artery bypass. Experienced neurosurgeons evaluated each model by practicing the aforementioned bypasses on the models. Face and content validities were assessed using the bypass participant survey. RESULTS: A workflow for model production was developed, and these models were used during microsurgical courses at 2 neurosurgical institutions. Each model is accompanied by a corresponding prototypical case and surgical video, creating a simulation scenario. Seven experienced cerebrovascular neurosurgeons practiced microvascular anastomoses on each of the models and completed surveys. They reported that actual anastomosis within a specific approach was well replicated by the models, and difficulty was comparable to that for real surgery, which confirms the face validity of the models. All experts stated that practice using these models may improve bypass technique, instrument handling, and surgical technique when applied to patients, confirming the content validity of the models. CONCLUSIONS: The 7 bypasses simulation set includes novel models that effectively simulate surgical scenarios of a bypass within distinct deep anatomical corridors, as well as hand and operator positions. These models use artificial materials, are reusable, and can be implemented for personal training and during microsurgical courses.


Asunto(s)
Revascularización Cerebral , Humanos , Revascularización Cerebral/métodos , Craneotomía , Procedimientos Neuroquirúrgicos/métodos , Encéfalo , Cráneo
3.
Front Oncol ; 11: 668661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660258

RESUMEN

BACKGROUND: Fluorescein sodium (FNa) is a fluorescence agent used with a wide-field operating microscope for intraoperative guidance and with confocal laser endomicroscopy (CLE) to evaluate brain tissue. Susceptibility of FNa to degradation over time may affect CLE image quality during prolonged surgeries. This study describes improved characteristics of CLE images after intraoperative redosing with FNa. METHODS: A retrospective analysis was performed using CLE images obtained ex vivo from samples obtained during tumor resections with FNa-based fluorescence guidance with a wide-field operating microscope. The comparison groups included CLE images acquired after FNa redosing (redose imaging group), images from the same patients acquired after the initial FNa dose (initial-dose imaging group), and images from patients in whom redosing was not used (single-dose imaging group). A detailed assessment of image quality and interpretation regarding different FNa dosage and timing of imaging after FNa administration was conducted for all comparison groups. RESULTS: The brightest and most contrasting images were observed in the redose group compared to the initial-dose and single-dose groups (P<0.001). The decay of FNa signal negatively correlated with brightness (rho = -0.52, P<0.001) and contrast (rho = -0.57, P<0.001). Different doses of FNa did not significantly affect the brightness (P=0.15) or contrast (P=0.09) in CLE images. As the mean timing of imaging increased, the percentage of accurately diagnosed images decreased (P=0.03). CONCLUSIONS: The decay of the FNa signal is directly associated with image brightness and contrast. The qualitative interpretation scores of images were highest for the FNa redose imaging group. Redosing with FNa to improve the utility of CLE imaging should be considered a safe and beneficial strategy during prolonged surgeries.

4.
Oper Neurosurg (Hagerstown) ; 21(6): 558-569, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34662910

RESUMEN

BACKGROUND: Aneurysm clipping simulation models are needed to provide tactile feedback of biological vessels in a nonhazardous but surgically relevant environment. OBJECTIVE: To describe a novel system of simulation models for aneurysm clipping training and assess its validity. METHODS: Craniotomy models were fabricated to mimic actual tissues and movement restrictions experienced during actual surgery. Turkey wing vessels were used to create aneurysm models with patient-specific geometry. Three simulation models (middle cerebral artery aneurysm clipping via a pterional approach, anterior cerebral artery aneurysm clipping via an interhemispheric approach, and basilar artery aneurysm clipping via an orbitozygomatic pretemporal approach) were subjected to face, content, and construct validity assessments by experienced neurosurgeons (n = 8) and neurosurgery trainees (n = 8). RESULTS: Most participants scored the model as replicating actual aneurysm clipping well and scored the difficulty of clipping as being comparable to that of real surgery, confirming face validity. Most participants responded that the model could improve clip-applier-handling skills when working with patients, which confirms content validity. Experienced neurosurgeons performed significantly better than trainees on all 3 models based on subjective (P = .003) and objective (P < .01) ratings and on time to complete the task (P = .04), which confirms construct validity. Simulations were used to discuss clip application strategies and compare them to prototype clinical cases. CONCLUSION: This novel aneurysm clipping model can be used safely outside the wet laboratory; it has high face, content, and construct validity; and it can be an effective training tool for microneurosurgery training during aneurysm surgery courses.


Asunto(s)
Aneurisma Intracraneal , Procedimientos Neuroquirúrgicos , Entrenamiento Simulado , Arteria Basilar/cirugía , Arterias Cerebrales/cirugía , Craneotomía/educación , Educación de Postgrado en Medicina , Humanos , Aneurisma Intracraneal/cirugía , Neurocirugia/educación , Procedimientos Neuroquirúrgicos/educación , Grapado Quirúrgico/educación
5.
Mol Imaging Biol ; 23(4): 586-596, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33544308

RESUMEN

PURPOSE: This study evaluated the use of molecular imaging of fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as a discriminatory marker for intraoperative tumor border identification in a murine glioma model. PROCEDURES: 2-NBDG was assessed in GL261 and U251 orthotopic tumor-bearing mice. Intraoperative fluorescence of topical and intravenous 2-NBDG in normal and tumor regions was assessed with an operating microscope, handheld confocal laser scanning endomicroscope (CLE), and benchtop confocal laser scanning microscope (LSM). Additionally, 2-NBDG fluorescence in tumors was compared with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. RESULTS: Intravenously administered 2-NBDG was detectable in brain tumor and absent in contralateral normal brain parenchyma on wide-field operating microscope imaging. Intraoperative and benchtop CLE showed preferential 2-NBDG accumulation in the cytoplasm of glioma cells (mean [SD] tumor-to-background ratio of 2.76 [0.43]). Topically administered 2-NBDG did not create sufficient tumor-background contrast for wide-field operating microscope imaging or under benchtop LSM (mean [SD] tumor-to-background ratio 1.42 [0.72]). However, topical 2-NBDG did create sufficient contrast to evaluate cellular tissue architecture and differentiate tumor cells from normal brain parenchyma. Protoporphyrin IX imaging resulted in a more specific delineation of gross tumor margins than intravenous or topical 2-NBDG and a significantly higher tumor-to-normal-brain fluorescence intensity ratio. CONCLUSION: After intravenous administration, 2-NBDG selectively accumulated in the experimental brain tumors and provided bright contrast under wide-field fluorescence imaging with a clinical-grade operating microscope. Topical 2-NBDG was able to create a sufficient contrast to differentiate tumor from normal brain cells on the basis of visualization of cellular architecture with CLE. 5-Aminolevulinic acid demonstrated superior specificity in outlining tumor margins and significantly higher tumor background contrast. Given the nontoxicity of 2-NBDG, its use as a topical molecular marker for noninvasive in vivo intraoperative microscopy is encouraging and warrants further clinical evaluation.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Glucosa/metabolismo , Imagen Molecular/métodos , Cirugía Asistida por Computador/métodos , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Ácido Aminolevulínico/metabolismo , Animales , Apoptosis/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Proliferación Celular/fisiología , Desoxiglucosa/análogos & derivados , Desoxiglucosa/metabolismo , Femenino , Fluorescencia , Glioma/metabolismo , Glioma/patología , Glioma/cirugía , Humanos , Ratones , Ratones Endogámicos C57BL , Monitoreo Intraoperatorio/métodos , Protoporfirinas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
JOR Spine ; 4(4): e1179, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35005445

RESUMEN

INTRODUCTION: In this study, magnetic resonance imaging data was used to (1) model IVD-specific gradients of glucose, oxygen, lactate, and pH; and (2) investigate possible effects of covariate factors (i.e., disc geometry, and mean apparent diffusion coefficient values) on the IVD's microenvironment. Mathematical modeling of the patient's specific IVD microenvironment could be important when selecting patients for stem cell therapy due to the increased nutrient demand created by that treatment. MATERIALS AND METHODS: Disc geometry and water diffusion coefficients were extracted from MRIs of 37 patients using sagittal T1-weighted images, T2-weighted images, and ADC Maps. A 2-D steady state finite element mathematical model was developed in COMSOL Multiphysics® 5.4 to compute concentration maps of glucose, oxygen, lactate and pH. RESULTS: Concentration of nutrients (i.e., glucose, and oxygen) dropped with increasing distance from the cartilaginous endplates (CEP), whereas acidity levels increased. Most discs experienced poor nutrient levels along with high acidity values in the inner annulus fibrosus (AF). The disc's physiological microenvironment became more deficient as degeneration progressed. For example, minimum glucose concentration in grade 4 dropped by 31.1% compared to grade 3 (p < 0.0001). The model further suggested a strong effect of the following parameters: disc size, AF and CEP diffusivities, metabolic reactions, and cell density on solute concentrations in the disc (p < 0.05). CONCLUSION: The significance of this work implies that the individual morphology and physiological conditions of each disc, even among discs of the same Pfirrmann grade, should be evaluated when modeling IVD solute concentrations.

7.
Front Oncol ; 9: 925, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31612102

RESUMEN

Introduction: Acridine orange (AO) was first extracted from coal tar in the late nineteenth century and was used as a fluorescent dye. In this paper, we review emergent research about novel applications of AO for fluorescence surgery and cancer therapy. Materials and methods: We performed a systematic search in the MEDLINE, PubMed, Cochrane library, Google Scholar, Embase, Web of Science, and Scopus database using combinations of the term "acridine orange" with the following: "surgical oncology," "neuropathology," "microsurgery," "intraoperative fluorescence," "confocal microscopy," "pathology," "endomicroscopy," "guidance," "fluorescence guidance," "oncology," "surgery," "neurooncology," and "photodynamic therapy." Peer-reviewed articles published in English were included in this review. We have also scanned references for relevant articles. Results: We have reviewed studies on the various application of AO in microscopy, endomicroscopy, intraoperative fluorescence guidance, photodynamic therapy, sonodynamic therapy, radiodynamic therapy. Conclusion: Although the number of studies on the clinical use of AO is limited, pilot studies have demonstrated the safety and feasibility of its application as an intraoperative fluorescent dye and as a novel photo- and radio-sensitizator. Further clinical studies are necessary to more definitively assess the clinical benefit AO-based fluorescence guidance, therapy for sarcomas, and to establish feasibility of this new approach for the treatment of other tumor types.

8.
Coluna/Columna ; 17(4): 317-322, Oct.-Dec. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-975005

RESUMEN

ABSTRACT Introduction: Apoptosis is a contributing factor to degenerating intervertebral disc (IVD). Disc regeneration has been attempted by transplanting cells into the disc, with some gains in disc height achieved in animal models. Here, we study whether the apoptotic microenvironment affects the transplanted disc cells. Methods: Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were grown in media then starved for 5 days in vitro by not changing the media. Three aspects of apoptotic cell influence on the transplanted cells were tested in a total of 32 samples: 1) the effect of apoptotic cytokines in the media, 2) reduced glucose in the media, and 3) apoptotic cell bodies in the flask. The Trypan Blue, AlamarBlue®, and 1,9-Dimethyl-Methylene Blue assays for sulfated glycosaminoglycan (sGAG) content were performed (n=4). Results: There were significant decreases in cell viability between the control, 25% conditioned media (CM) and starved control group. There were no significant differences in cell number, metabolic activity or sGAG production in cells grown in different conditioned media compared to cells grown in complete media. The cells of the control decreased in viability and number over the 5 days without feeding, then improved dramatically when feeding was resumed. Flasks that received transplanted cells in addition to renewed feeding did not recover as much as the cells in the re-fed group. Conclusions: Cytokines from starved cells negatively impact on the viability of healthy cells. Starving cells that receive new sources of nutrition have even higher viability than transplanted cells. This indicates that altering and improving the nutrient supply problem in the IVD could be a valuable option. Level of Evidence III; Case control studyg.


RESUMO Introdução: A apoptose é um fator que contribui para a degeneração do disco intervertebral (DIV). A tentativa de regenerar o disco foi por meio de transplante de células no disco, com alguns ganhos de altura do disco alcançados em modelos animais. Aqui estudamos se o microambiente apoptótico afeta as células do disco transplantadas. Métodos: Células humanas do ânulo fibroso (AF) e do núcleo pulposo (NP) foram cultivadas in vitro em meio de cultura e privadas de nutrição por cinco dias, sem alteração dos meios. Três aspectos da influência de células apoptóticas em células transplantadas foram testados em um total de 32 amostras: 1) o efeito de citocinas apoptóticas no meio de cultura, 2) redução de glicose no meio e 3) corpos celulares apoptóticos no frasco. Realizaram-se ensaios com azul de tripano, AlamarBlue® e 1,9-dimetil azul de metileno para o teor de glicosaminoglicano sulfatado (sGAG) (n = 4). Resultados: Constataram-se decréscimos significativos na viabilidade celular entre o grupo controle, meio condicionado (MC) a 25% e grupo controle privado de nutrição. Não houve diferenças significativas no número de células, atividade metabólica ou produção de sGAG em células cultivadas em diferentes meios condicionados em comparação com o meio completo. As células de controle tiveram redução de viabilidade e de número ao longo dos 5 dias sem alimentação; a seguir, houve melhorara substancial ao se retomar a alimentação. Os frascos que receberam células transplantadas, além da alimentação renovada, não se recuperaram tanto quanto as células do grupo realimentado. Conclusões: As citocinas de células famintas tiveram impacto negativo sobre a viabilidade das células saudáveis. As células famintas que recebem novas fontes de nutrição têm viabilidade ainda maior do que as células transplantadas. Isso indica que alterar e melhorar o fornecimento de nutrientes no DIV pode ser uma opção valiosa. Nível de Evidência III; Estudo de caso controleg.


RESUMEN Introducción: La apoptosis es un factor que contribuye a la degeneración del disco intervertebral (DIV). El intento de regenerar el disco fue por medio de trasplante de células en el disco, con el que se ganó el aumento de altura del disco logrado en modelos animales. Aquí estudiamos si el microambiente apoptótico afecta a las células del disco trasplantadas. Métodos: Células humanas del anillo fibroso (AF) humano y del núcleo pulposo (NP) fueron cultivadas in vitro en medio de cultivo y privadas de nutrición por 5 días, sin alteración de los medios. Tres aspectos de la influencia de las células apoptóticas trasplantadas se probaron en un total de 32 muestras: 1) el efecto de las citoquinas apoptóticas en el medio de cultivo, 2) reducción de la glucosa en el medio y 3) los cuerpos celulares apoptóticos en el matraz. Se realizaron ensayos con azul de tripano, AlamarBlue® y 1,9-dimetil-azul de metileno para el contenido de glicosaminoglicano sulfatado (sGAG) (n = 4). Resultados: Se constataron disminuciones significativas de la viabilidad celular entre el grupo control, medio condicionado (MC) al 25% y el grupo control privado de nutrición. No hubo diferencias significativas en el número de células, la actividad metabólica o producción de sGAG en células cultivadas en diferentes medios condicionados en comparación con el medio completo. Las células de control tuvieron reducción de viabilidad y de número a lo largo de los 5 días sin alimentación; luego, hubo una mejora sustancial al reanudar la alimentación. Los matraces que recibieron células trasplantadas, además de la alimentación renovada, no se recuperaron tanto como las células del grupo alimentado nuevamente. Conclusiones: Las citoquinas de las células privadas de alimento tuvieron un impacto negativo en la viabilidad de las células sanas. Las células hambrientas que reciben nuevas fuentes de nutrición tienen mayor viabilidad que las células trasplantadas. Esto indica que cambiar y mejorar suministro de nutrientes en el DIV puede ser una opción valiosa. Nivel de Evidencia III; Estudio de caso controlg.


Asunto(s)
Humanos , Degeneración del Disco Intervertebral , Apoptosis , Trasplante de Células , Metabolismo
9.
Coluna/Columna ; 17(3): 237-239, July-Sept. 2018.
Artículo en Inglés | LILACS | ID: biblio-952933

RESUMEN

ABSTRACT The intervertebral disc (IVD) is one of the parts of the body most commonly affected by disease, and it is only recently that we have come closer to understanding the reasons for its degeneration, in which nutrient supply plays a crucial role. In this literature review, we discuss the basic principles and characteristics of energy supply and demand to the IVD. Specifically, we review how different metabolites influence IVD cell activity, the effects of mechanical loading on IVD cell metabolism, and differences in energy metabolism of the annulus fibrous and nucleus pulposus cell phenotypes. Determining the factors that influence nutrient supply and demand in the IVD will enhance our understanding of the IVD pathology, and help to elucidate new therapeutic targets for IVD degeneration treatment.


RESUMO O disco intervertebral (IVD) é uma das partes mais comuns do corpo e apenas recentemente nos aproximamos de compreender as razões da sua degeneração, em que o suprimento de nutrientes desempenha um papel crucial. Nesta revisão da literatura, discutimos os princípios básicos e as nuances do fornecimento e da demanda de energia para o IVD. Específicamente, analisamos como os diferentes metabólitos influenciam na atividade das células IVD, os efeitos da carga mecânica no metabolismo das células IVD, a diferença no metabolismo energético dos fenótipos das células fibrosas e do núcleo do pulposus anelar. A determinação de fatores que influenciam o suprimento e a demanda de nutrientes no IVD aumentará nossa compreensão da patologia IVD e ajudará a elucidar novos alvos terapêuticos para o tratamento da degeneração IVD.


RESUMEN El disco intervertebral (IVD, por sus siglas en inglés) es una de las partes más comúnmente enfermas del cuerpo y solo recientemente nos acercamos a la comprensión de los motivos de su degeneración, de los cuales el suministro de nutrientes juega un papel crucial. En esta revisión de la literatura discutimos los principios básicos y los matices de la oferta y demanda de energía para el IVD. Específicamente, revisamos cómo los diferentes metabolitos influyen en la actividad de las células IVD, los efectos de la carga mecánica sobre el metabolismo de las células IVD y las diferencias en el metabolismo energético de los fenotipos de las células del anillo fibroso y el núcleo pulposo. La determinación de los factores que influyen en la oferta y demanda de nutrientes en el IVD mejorará nuestra comprensión de la patología IVD y ayudará a dilucidar nuevos objetivos terapéuticos para el tratamiento de la degeneración IVD.


Asunto(s)
Humanos , Disco Intervertebral/patología , Células/metabolismo , Metabolismo Energético , Disco Intervertebral/anatomía & histología , Disco Intervertebral/anomalías
10.
PLoS One ; 12(8): e0183697, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28846710

RESUMEN

PURPOSE: To assess the utility of apparent diffusion coefficient (ADC) maps for the assessment of patients with advanced degenerative lumbar spine disease and describe characteristic features of ADC maps in various degenerative lumbar spinal conditions. METHODS: T1-weighted, T2-weighted and diffusion weighted (DWI) MR images of 100 consecutive patients admitted to the spinal surgery service were assessed. ADC maps were generated from DWI images using Osyrix software. The ADC values and characteristic ADC maps were assessed in the regions of interest over the different pathological entities of the lumbar spine. RESULTS: The study included 452 lumbar vertebral segments available for analysis of ADCs. Characteristic ADC map features were identified for protrusion, extrusion and sequester types of lumbar disk herniations, spondylolisthesis, reactive Modic endplate changes, Pfirrmann grades of IVD degeneration, and compromised spinal nerves. Compromised nerve roots had significantly higher mean ADC values than adjacent (p < 0.001), contralateral (p < 0.001) or adjacent contralateral (p < 0.001) nerve roots. Compared to the normal bone marrow, Modic I changes showed higher ADC values (p = 0.01) and Modic 2 changes showed lower ADC values (p = 0.02) respectively. ADC values correlated with the Pfirrmann grading, however differed from herniated and non-herniated disks of the matched Pfirrmann 3 and 4 grades. CONCLUSION: Quantitative and qualitative evaluation of ADC mapping may provide additional useful information regarding the fluid dynamics of the degenerated spine and may complement standard MRI imaging protocol for the comprehensive assessment of surgical patients with lumbar spine pathology. ADC maps were advantageous in differentiating reactive bone marrow changes, and more precise assessment of the disk degeneration state. ADC mapping of compressed nerve roots showed promise but requires further investigation on a larger cohort of patients.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Vértebras Lumbares/diagnóstico por imagen , Enfermedades de la Columna Vertebral/diagnóstico por imagen , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Vértebras Lumbares/cirugía , Masculino , Persona de Mediana Edad , Enfermedades de la Columna Vertebral/cirugía
11.
Front Surg ; 3: 55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27800481

RESUMEN

INTRODUCTION: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical "theranostics." In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. METHODS: Review of the literature. RESULTS: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. CONCLUSION: We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...