Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
ACS Nano ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767983

RESUMEN

In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.

2.
Front Vet Sci ; 10: 1224452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680386

RESUMEN

Introduction: Osteoarthritis is a common disease in dogs resulting in chronic pain and decreased wellbeing. Common analgesics such as non-steroidal anti-inflammatories may fail to control pain and can produce major adverse effects. Study objectives were to evaluate pharmacokinetics, therapeutic efficacy, and safety of subcutaneous liposomal-cannabidiol (CBD) as an additional analgesic therapy in dogs suffering from naturally-occurring osteoarthritis. Methods: Six such dogs were recruited following ethics approval and owner consent. Dogs were administered a single subcutaneous injection of 5 mg/kg liposomal-CBD. Plasma concentrations of CBD, blood work, activity monitoring collar data, wellbeing questionnaire (owners) and pain scoring (veterinarian) were performed at baseline and monitored up to six weeks following intervention. Data overtime were compared with baseline using linear-regression mixed-effects. P-value was set at 0.05. Results: CBD plasma concentrations were observed for 6 weeks; median (range) peak plasma concentration (Cmax) was 45.2 (17.8-72.5) ng/mL, time to Cmax was 4 (2-14) days and half-life was 12.4 (7.7-42.6) days. Median (range) collar activity score was significantly increased on weeks 5-6; from 29 (17-34) to 34 (21-38). Scores of wellbeing and pain evaluations were significantly improved at 2-3 weeks; from 69 (52-78) to 53.5 (41-68), and from 7.5 (6-8) to 5.5 (5-7), respectively. The main adverse effect was minor local swelling for several days in 5/6 dogs. Conclusion: Liposomal-CBD administered subcutaneously produced detectable CBD plasma concentrations for 6 weeks with minimal side effects and demonstrated reduced pain and increased wellbeing as part of multimodal pain management in dogs suffering from osteoarthritis. Further placebo-controlled studies are of interest.

3.
ACS Nano ; 17(14): 13147-13157, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37417667

RESUMEN

Despite the worldwide success of mRNA-LNP Covid-19 vaccines, the nanoscale structures of these formulations are still poorly understood. To fill this gap, we used a combination of atomic force microscopy (AFM), dynamic light scattering (DLS), transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM), and the determination of the intra-LNP pH gradient to analyze the nanoparticles (NPs) in BNT162b2 (Comirnaty), comparing it with the well-characterized PEGylated liposomal doxorubicin (Doxil). Comirnaty NPs had similar size and envelope lipid composition to Doxil; however, unlike Doxil liposomes, wherein the stable ammonium and pH gradient enables accumulation of 14C-methylamine in the intraliposomal aqueous phase, Comirnaty LNPs lack such pH gradient in spite of the fact that the pH 4, at which LNPs are prepared, is raised to pH 7.2 after loading of the mRNA. Mechanical manipulation of Comirnaty NPs with AFM revealed soft, compliant structures. The sawtooth-like force transitions seen during cantilever retraction imply that molecular strands, corresponding to mRNA, can be pulled out of NPs, and the process is accompanied by stepwise rupture of mRNA-lipid bonds. Unlike Doxil, cryo-TEM of Comirnaty NPs revealed a granular, solid core enclosed by mono- and bilipid layers. Negative staining TEM shows 2-5 nm electron-dense spots in the LNP's interior that are aligned into strings, semicircles, or labyrinth-like networks, which may imply cross-link-stabilized RNA fragments. The neutral intra-LNP core questions the dominance of ionic interactions holding together this scaffold, raising the possibility of hydrogen bonding between mRNA and the lipids. Such interaction, described previously for another mRNA/lipid complex, is consistent with the steric structure of the ionizable lipid in Comirnaty, ALC-0315, displaying free ═O and -OH groups. It is hypothesized that the latter groups can get into steric positions that enable hydrogen bonding with the nitrogenous bases in the mRNA. These structural features of mRNA-LNP may be important for the vaccine's activities in vivo.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Vacunas contra la COVID-19 , Vacuna BNT162 , Enlace de Hidrógeno , ARN Mensajero/genética , Nanopartículas/química , Lípidos/química , Liposomas/química , ARN Interferente Pequeño/química
4.
Front Immunol ; 14: 1086930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923414

RESUMEN

Introduction: Allografts are the most common bone grafts for repairing osseous defects. However, their use is associated with an increased risk for infections, donor disease transmission and osteointegration deficiency. Resolvin D1 (RvD1) is an endogenous lipid with a scientifically proven pivotal role in inflammation resolution and osteoclastogenesis inhibition. Yet, its biological relevance as a potential bone regenerative drug has been scarcely studied. Here, we aim to investigate the RvD1 effect on allograft osteointegration in the alveolar bone regeneration (ABR) murine model. Methods: ABR model consisted of osseous defects that were generated by the extraction of the maxillary first molar in C57BL/6 mice. The sockets were filled with allograft and analyzed via RNA sequencing. Then they were locally injected with either RvD1 or saline via single or repeated administrations. The mice were sacrificed 2W after the procedure, and regenerated sites were analyzed using µCT and histology. First, MC3T3-E1 preosteoblasts were plated with IL-17 pro-inflammatory medium, and RANKL/OPG ratio was measured. Secondly, the MC3T3-E1 were cultured w/o RvD1, for 3W. Osteoblasts' markers were evaluated in different days, using qRT-PCR and Alizarin Red staining for calcified matrix. Results: In vivo, neither allograft alone nor single RvD1 administration promote bone regeneration in comparison to the control of spontaneous healing and even triggered an elevation in NR1D1 and IL1RL1 expression, markers associated with inflammation and inhibition of bone cell differentiation. However, repeated RvD1 treatment increased bone content by 135.92% ± 45.98% compared to its specific control, repeated sham, and by 39.12% ± 26.3% when compared to the spontaneous healing control group (n=7/group). Histologically, repeated RvD1 reduced the number of TRAP-positive cells, and enhanced allograft osteointegration with new bone formation. In vitro, RvD1 rescued OPG expression and decreased RANKL/OPG ratio in IL-17 pro-inflammatory conditions. Furthermore, RvD1 increased the expression of RUNX2, OSX, BSP and OC/BGLAP2 and the mineralized extracellular matrix during MC3T3-E1 osteoblasts differentiation. Conclusions: Repeated administrations of RvD1 promote bone regeneration via a dual mechanism: directly, via enhancement of osteoblasts' differentiation and indirectly, through reduction of osteoclastogenesis and RANKL/OPG ratio. This suggests that RvD1 may be a potential therapeutic bioagent for osseous regeneration following allograft implantation.


Asunto(s)
Interleucina-17 , Osteogénesis , Ratones , Animales , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular , Osteoblastos/metabolismo , Inflamación/metabolismo , Aloinjertos , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo
5.
J Control Release ; 354: 316-322, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549393

RESUMEN

The early and massive vaccination campaign in Israel with the mRNA-LNP Comirnaty® (Pfizer-BioNTech) vaccine against the SARS-CoV-2 virus made available large amounts of data regarding the efficacy and safety of this vaccine. Adverse reactions to mRNA-based SARS-CoV-2 vaccines are rare events, but due to large mediatic coverage they became feared and acted as a potential source of delay for the vaccination of the Israeli population. The experience with the reactogenicity of the polyethylene glycol (PEG) moiety of PEGylated liposomes, PEGylated proteins and other PEGylated drugs raised the fear that similar adverse effects can be associated with the PEG lipid which is an essential component of currently used mRNA-LNP vaccines against COVID-19. In this study we quantified the levels of anti-PEG IgG, IgM and IgE present in the blood of 79 volunteers immediately before and 3 weeks after receiving a first dose of Comirnaty® vaccine. Our in vitro results show that different humanized anti-PEG antibodies bind the PEGylated nano-liposomes in a concentration-dependent manner, but they bind with a lower affinity to the Comirnaty vaccine, despite it having a high mole% of neutral PEG2000-lipid on its surface. We found an increase in IgG concentration in the blood 3 weeks after the first vaccine administration, but no increase in IgM or IgE. In addition, no severe signs of adverse reactions to the Comirnaty vaccine were observed in the population studied despite the significant pre-existing high titers of IgG before the first dose of vaccine in 2 donors.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , SARS-CoV-2 , Vacunación , Liposomas , Polietilenglicoles , ARN Mensajero , Lípidos , Inmunoglobulina E , Inmunoglobulina G , Inmunoglobulina M , Anticuerpos Antivirales
6.
Front Immunol ; 13: 928132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275768

RESUMEN

The study aimed to investigate the role of RvD1 in acute and prolonged sterile inflammation and bone remodeling. A mouse model of sterile inflammation that involves bone resorption was used to examine endogenous RvD1 kinetics during inflammation. Application of exogenous RvD1 significantly inhibited bone remodeling via osteoclast reduction, alongside an anti-inflammatory secretome shift, increased macrophages recruitment and reduction of T-cytotoxic cells. In vitro and in vivo, RvD1 led to significant reduction in RANK expression which reduce osteoclastogenesis in a dose-dependent manner. Taken together, the data shows a dual role for RvD1, as a potent immunoresolvent agent alongside an osteoresolvent role, showing a potential therapeutic agent in bone resorption associated inflammatory conditions.


Asunto(s)
Resorción Ósea , Monocitos , Ratones , Animales , Técnicas de Movimiento Dental , Inflamación/tratamiento farmacológico , Antiinflamatorios/uso terapéutico
7.
Front Vet Sci ; 9: 892306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573415

RESUMEN

A 14-year-old intact mixed breed dog (26 kg) was submitted for a novel cannabidiol (CBD) analgesic treatment. The dog was cachectic and had a testicular neoplasia, hip and elbow osteoarthritis and severe cervical pain. Analgesic treatment included canine osteoarthritic supplement, robencoxib and gabapentin. An additional liposomal CBD injectable formulation at 5 mg/kg was administered subcutaneously between the shoulder blades. The dog was monitored using an activity monitoring collar (PetPace), owner wellbeing questionnaire (Canine Brief Pain Inventory; CBPI), pain interactive visual analog scale (iVAS), blood work and CBD plasma concentrations. A week from the injection and up to 3 weeks afterwards the dog had improved CBPI and iVAS pain scores, and increased collar activity scores. CBD was quantified in plasma for 28 days. Due to disease progression, further difficulty to rise and walk, and relapse to pain after 3 weeks, the owners requested a second liposomal CBD injection, which was performed 4 weeks following the first injection using 3 mg/kg dose. Two days later, the dog was found dead in the yard under direct sun, while environmental temperature was 37°C. Major findings on necropsy revealed evidence of heat stroke and severe cervical disc protrusion with spinal hematoma, none related to liposomal CBD. In conclusion, subcutaneous liposomal CBD produced quantifiable CBD plasma concentrations for 28 days and may be an effective additional treatment as part of multimodal pain management in dogs.

8.
Nat Nanotechnol ; 17(4): 337-346, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35393599

RESUMEN

After over a billion of vaccinations with messenger RNA-lipid nanoparticle (mRNA-LNP) based SARS-CoV-2 vaccines, anaphylaxis and other manifestations of hypersensitivity can be considered as very rare adverse events. Although current recommendations include avoiding a second dose in those with first-dose anaphylaxis, the underlying mechanisms are unknown; therefore, the risk of a future reaction cannot be predicted. Given how important new mRNA constructs will be to address the emergence of new viral variants and viruses, there is an urgent need for clinical approaches that would allow a safe repeated immunization of high-risk individuals and for reliable predictive tools of adverse reactions to mRNA vaccines. In many aspects, anaphylaxis symptoms experienced by the affected vaccine recipients resemble those of infusion reactions to nanomedicines. Here we share lessons learned over a decade of nanomedicine research and discuss the current knowledge about several factors that individually or collectively contribute to infusion reactions to nanomedicines. We aim to use this knowledge to inform the SARS-CoV-2 lipid-nanoparticle-based mRNA vaccine field.


Asunto(s)
Anafilaxia , COVID-19 , Anafilaxia/etiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Liposomas , Nanomedicina , Nanopartículas , ARN Mensajero/genética , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
9.
Pharmaceutics ; 13(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34959462

RESUMEN

Multidrug resistance (MDR) of cancer cells remains a major obstacle to favorable outcomes of treatment with many drugs, including doxorubicin. Most of the clinical trials failed to demonstrate the benefit of the drug efflux transporter P-glycoprotein (P-gp) inhibitors to circumvent P-gp-mediated drug resistance in vivo. The present study explored the therapeutic potential of combined treatment with liposomal doxorubicin, P-gp inhibitor quinine, and the photodynamic therapy (PDT) using indocyanine green (ICG) in the adenocarcinoma drug-resistant tumor model. Liposomes were actively co-remotely loaded with doxorubicin and quinine, and ICG was passively adsorbed. The liposomes were characterized by differential scanning calorimetry (DSC) and cryogenic transmission microscopy (Cryo-TEM). We found that quinine impaired the crystalline structure of doxorubicin. In vitro, treatment with single agents themselves was insufficient to inhibit the growth of HT-29 MDR1 cells. However, pegylated liposomal doxorubicin and quinine (PLDQ) significantly diminished HT-29 MDR1 cell survival. Furthermore, survival inhibition intensified by the addition of ICG to the PLDQ (ICG + PLDQ). In vivo, ICG + PLDQ significantly decreased tumor growth when combined with tumor irradiation with NIR light (** p < 0.01). ICG + PLDQ + irradiation was superior to single treatments or combinational treatments without irradiation. These findings suggest that ICG + PLDQ can overcome P-gp-mediated MDR in cancer cells.

10.
Pharmaceutics ; 13(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34959466

RESUMEN

Antibiotic resistance is a global health threat. There are a few antibiotics under development, and even fewer with new modes of action and no cross-resistance to established antibiotics. Accordingly, reformulation of old antibiotics to overcome resistance is attractive. Nano-mupirocin is a PEGylated nano-liposomal formulation of mupirocin, potentially enabling parenteral use in deep infections, as previously demonstrated in several animal models. Here, we describe extensive in vitro profiling of mupirocin and Nano-mupirocin and correlate the resulting MIC data with the pharmacokinetic profiles seen for Nano-mupirocin in a rat model. Nano-mupirocin showed no cross-resistance with other antibiotics and retained full activity against vancomycin-, daptomycin-, linezolid- and methicillin- resistant Staphylococcus aureus, against vancomycin-resistant Enterococcus faecium, and cephalosporin-resistant Neisseria gonorrhoeae. Following Nano-mupirocin injection to rats, plasma levels greatly exceeded relevant MICs for >24 h, and a biodistribution study in mice showed that mupirocin concentrations in vaginal secretions greatly exceeded the MIC90 for N. gonorrhoeae (0.03 µg/mL) for >24 h. In summary, Nano-mupirocin has excellent potential for treatment of several infection types involving multiresistant bacteria. It has the concomitant benefits from utilizing an established antibiotic and liposomes of the same size and lipid composition as Doxil®, an anticancer drug product now used for the treatment of over 700,000 patients globally.

11.
Micromachines (Basel) ; 12(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071476

RESUMEN

The understanding that systemic context and tissue crosstalk are essential keys for bridging the gap between in vitro models and in vivo conditions led to a growing effort in the last decade to develop advanced multi-organ-on-a-chip devices. However, many of the proposed devices have failed to implement the means to allow for conditions tailored to each organ individually, a crucial aspect in cell functionality. Here, we present two 3D-print-based fabrication methods for a generic multi-organ-on-a-chip device: One with a PDMS microfluidic core unit and one based on 3D-printed units. The device was designed for culturing different tissues in separate compartments by integrating individual pairs of inlets and outlets, thus enabling tissue-specific perfusion rates that facilitate the generation of individual tissue-adapted perfusion profiles. The device allowed tissue crosstalk using microchannel configuration and permeable membranes used as barriers between individual cell culture compartments. Computational fluid dynamics (CFD) simulation confirmed the capability to generate significant differences in shear stress between the two individual culture compartments, each with a selective shear force. In addition, we provide preliminary findings that indicate the feasibility for biological compatibility for cell culture and long-term incubation in 3D-printed wells. Finally, we offer a cost-effective, accessible protocol enabling the design and fabrication of advanced multi-organ-on-a-chip devices.

12.
Pharmaceutics ; 13(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535418

RESUMEN

We previously reported the development of a novel formulation of an ultra-long-acting local anesthetic based on bupivacaine encapsulated in large multivesicular liposomes (Bupisomes) embedded in hydrogel. This formulation (Bupigel) prolonged bupivacaine release from the formulation in dissolution-like studies in vitro and analgesia in vivo in mouse, rat, and pig models. In this study we assessed Bupigel neurotoxicity on rabbit sciatic nerve using histopathology and electrophysiologic testing. Sciatic nerves of both hind limbs were injected dropwise with different formulations. Nerve conduction studies and needle electromyography two weeks after perineural administration showed signs of neural damage after injection of free lidocaine and bupivacaine, while there was no sign of neural damage after injection with saline, demonstrating the validity of the method. This test also did not show evidence of motor or sensory nerve damage after injection with liposomal bupivacaine at a dose 10-times higher than free bupivacaine. Histologically, signs of neural damage could be observed with lidocaine. Nerves injected with Bupigel showed mild signs of inflammation and small residues of hydrogel in granulomas, indicating a long residence time of the hydrogel at the site of injection, but no histopathological signs of nerve damage. This demonstrated that early signs of neural damage were detected electrophysiologically, showing the usefulness and sensitivity of electrodiagnostic testing in detection of neural damage from new formulations.

13.
Pharmaceutics ; 13(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478023

RESUMEN

Nano-drugs based on nanoparticles (NP) or on nano-assemblies as carriers of the active pharmaceutical ingredient (API) are often expected to perform better compared to conventional dosage forms. Maximum realization of this potential though requires optimization of multiple physico-chemical, including structural and morphological, parameters. Meaningful distributions of these parameters derived from sufficient populations of individual NPs rather than ensemble distributions are desirable for this task, provided that relevant high-resolution data is available. In this study we demonstrate powerful capabilities of the up-to-date cryogenic transmission electron-microscopy (cryo-TEM) as well as correlations with other techniques abundant in the nano-research milieu. We explored Doxil®-like (an anticancer drug and the first FDA-approved nano-drug) (75-100 nm) PEGylated liposomes encapsulating single doxorubicin-sulfate nano-rod-crystals (PLD). These crystals induce liposome sphere-to-ellipsoid deformation. Doxil® was characterized by a multitude of physicochemical methods. We demonstrate, that accompanied by advanced image-analysis means, cryo-TEM can successfully enable the determination of multiple structural parameters of such complex liposomal nano-drugs with an added value of statistically-sound distributions. The latter could not be achieved by most other physicochemical approaches. It seems that cryo-TEM is capable of quantitative description of individual liposome morphological features, including meaningful distributions of all structural elements, with averages that correlate with other physical methods. Here it is demonstrated that such quantitative cryo-TEM analysis is a powerful tool in determining what is the optimal drug to lipid ratio in PLD, which is found to be the drug to lipid ratio existing in Doxil®.

14.
Biochim Biophys Acta Gen Subj ; 1865(5): 129849, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33460771

RESUMEN

BACKGROUND: In Doxil®, PEGylated nanoliposomes are created by hydration of the lipids in ammonium sulfate, and are remotely loaded with doxorubicin by a transmembrane ammonium gradient. The ammonium sulfate is then removed from the external aqueous phase, surrounding the liposomes, and replaced by an isoosmotic sucrose solution in 10 mM histidine buffer at pH 6.5. METHODS: We prepared PEGylated liposomal doxorubicin (PLD) with a series of ammonium monovalent salts that after remote loading became the intraliposome doxorubicin counteranions. We analyzed the liposomes by solution X-ray scattering, differential scanning calorimetry, and electron micropscopy. RESULTS: PLDs prepared with sulfonic acid derivatives as counteranion exhibited chemical and physical stabilities. We determined the effect of these ammonium salt counteranions on the structure, morphology, and thermotropic behavior of the PEGylated nanoliposomes, formed before and after doxorubicin loading, and the bulk properties of the doxorubicin-counteranion complexes. By comparing the structure of the doxorubicin complexes in the bulk and inside the nanoliposomes, we revealed the effect of confinement on the structure and doxorubicin release rate for each of the derivatives of the ammonium sulfonic acid counteranions. CONCLUSIONS: We found that the extent and direction of the doxorubicin confinement effect and its release rate were strongly dependent on the type of counteranion. The counteranions, however, neither affected the structure and thermotropic behavior of the liposome membrane, nor the thickness and density of the liposome PEG layers. In an additional study, it was demonstrated that PLD made with ammonium-methane sulfonate exhibit a much lower Hand and Foot syndrome. GENERAL SIGNIFICANCE: The structure, physical state, and pharmacokinetics of doxorubicin in PEGylated nanoliposomes, prepared by transmembrane remote loading using gradients of ammonium salts, strongly depend on the counteranions.


Asunto(s)
Compuestos de Amonio/química , Antibióticos Antineoplásicos/química , Doxorrubicina/análogos & derivados , Polietilenglicoles/química , Alcanosulfonatos/química , Sulfato de Amonio/química , Aniones/química , Cristalización , Doxorrubicina/química , Mesilatos/química
15.
Sci Rep ; 10(1): 8172, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424121

RESUMEN

Orthodontic tooth movement (OTM) is a "sterile" inflammatory process. The present study aimed to reveal the underlying biological mechanisms, by studying the force associated-gene expression changes, in a time-dependent manner. Ni-Ti springs were set to move the upper 1st-molar in C57BL/6 mice. OTM was measured by µCT. Total-RNA was extracted from tissue blocks at 1,3,7 and 14-days post force application, and from two control groups: naïve and inactivated spring. Gene-expression profiles were generated by next-generation-RNA-sequencing. Gene Set Enrichment Analysis, K-means algorithm and Ingenuity pathway analysis were used for data interpretation. Genes of interest were validated with qRT-PCR. A total of 3075 differentially expressed genes (DEGs) were identified, with the greatest number at day 3. Two distinct clusters patterns were recognized: those in which DEGs peaked in the first days and declined thereafter (tissue degradation, phagocytosis, leukocyte extravasation, innate and adaptive immune system responses), and those in which DEGs were initially down-regulated and increased at day 14 (cell proliferation and migration, cytoskeletal rearrangement, tissue homeostasis, angiogenesis). The uncovering of novel innate and adaptive immune processes in OTM led us to propose a new term "Immunorthodontics". This genomic data can serve as a platform for OTM modulation future approaches.


Asunto(s)
Expresión Génica , Diente Molar/inmunología , Animales , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ortodoncia , ARN/genética , ARN/inmunología , Técnicas de Movimiento Dental
16.
Hum Vaccin Immunother ; 16(12): 3146-3154, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32401698

RESUMEN

Traditional non-living vaccines are often least effective in the populations that need them most, such as neonates and elderly adults. Vaccine adjuvants are one approach to boost the immunogenicity of antigens in populations with reduced immunity. Ideally, vaccine adjuvants will increase the seroconversion rates across the population, lead to stronger immune responses, and enable the administration of fewer vaccine doses. We previously demonstrated that a cationic liposomal formulation of the commercial influenza split virus vaccine (CCS/C-HA) enhanced cellular and humoral immunity to the virus, increased seroconversion rates, and improved survival after live virus challenge in a preclinical model, as compared to the commercial vaccine as is (F-HA). We now evaluated vaccine efficacy in different strains and sexes of mice and determined the role of innate immunity in the mechanism of action of the CCS/C adjuvant by testing the response of mice deficient in Toll-like receptors or the TLR/IL-1 adaptor protein MyD88 following immunization with CCS/C-HA vs. F-HA. Although TLR2- and TLR4-deficient mice responded to F-HA immunization, F-HA immunization failed to engender a significant immune response in the absence of MyD88. In contrast, immunization with the CCS/C-HA vaccine overcame the requirement for MyD88 in the response to the commercial vaccine and improved the immune responses and seroconversion rates in all strains of mice tested, including those deficient in TLR2 and TLR4.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Factor 88 de Diferenciación Mieloide , Infecciones por Orthomyxoviridae , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Humanos , Gripe Humana/prevención & control , Liposomas , Ratones , Ratones Endogámicos BALB C , Factor 88 de Diferenciación Mieloide/genética , Infecciones por Orthomyxoviridae/prevención & control
17.
Theranostics ; 10(9): 3867-3879, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226525

RESUMEN

The encapsulation of Glucocorticoids (GCs) into long-circulating liposomes (LCLs) is a proven strategy to reduce the side effects of glucocorticoids and improve the treatment of inflammatory diseases, such as rheumatoid arthritis (RA). With the aim of supporting the development of GC-loaded LCLs, and potentially predict patient response to therapy clinically, we evaluated a direct PET imaging radiolabelling approach for preformed GC-LCLs in an animal model of human inflammatory arthritis. Methods: A preformed PEGylated liposomal methylprednisolone hemisuccinate (NSSL-MPS) nanomedicine was radiolabelled using [89Zr]Zr(oxinate)4 (89Zr-oxine), characterised and tracked in vivo using PET imaging in a K/BxN serum-transfer arthritis (STA) mouse model of inflammatory arthritis and non-inflamed controls. Histology and joint size measurements were used to confirm inflammation. The biodistribution of 89Zr-NSSL-MPS was compared to that of free 89Zr in the same model. A therapeutic study using NSSL-MPS using the same time points as the PET/CT imaging was carried out. Results: The radiolabelling efficiency of NSSL-MPS with [89Zr]Zr(oxinate)4 was 69 ± 8 %. PET/CT imaging of 89Zr-NSSL-MPS showed high uptake (3.6 ± 1.5 % ID; 17.4 ± 9.3 % ID/mL) at inflamed joints, with low activity present in non-inflamed joints (0.5 ± 0.1 % ID; 2.7 ± 1.1 % ID/mL). Importantly, a clear correlation between joint swelling and high 89Zr-NSSL-MPS uptake was observed, which was not observed with free 89Zr. STA mice receiving a therapeutic dose of NSSL-MPS showed a reduction in inflammation at the time points used for the PET/CT imaging compared with the control group. Conclusions: PET imaging was used for the first time to track a liposomal glucocorticoid, showing high uptake at visible and occult inflamed sites and a good correlation with the degree of inflammation. A subsequent therapeutic response matching imaging time points in the same model demonstrated the potential of this radiolabeling method as a theranostic tool for the prediction of therapeutic response - with NSSL-MPS and similar nanomedicines - in the treatment of inflammatory diseases.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Liposomas/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Animales , Artritis Reumatoide/diagnóstico por imagen , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Inflamación/tratamiento farmacológico , Ratones , Nanomedicina/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Medicina de Precisión/métodos , Distribución Tisular
18.
Molecules ; 25(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012928

RESUMEN

PEGylated nanomedicines are known to induce infusion reactions (IRs) that in some cases can be life-threatening. Herein, we report a case study in which a patient with rare mediastinal and intracardiac IgG4-related sclerosing disease received 8 treatments of intravenously administered PEGylated liposomal methylprednisolone-succinate (NSSL-MPS). Due to the ethical requirements to reduce IRs, the patient received a cocktail of premedication including low dose of steroids, acetaminophen and H2 blockers before each infusion. The treatment was well-tolerated in that IRs, complement activation, anti-PEG antibodies and accelerated blood clearance of the PEGylated drug were not detected. Prior to the clinical study, an in vitro panel of assays utilizing blood of healthy donors was used to determine the potential of a PEGylated drug to activate complement system, elicit pro-inflammatory cytokines, damage erythrocytes and affect various components of the blood coagulation system. The overall findings of the in vitro panel were negative and correlated with the results observed in the clinical phase.


Asunto(s)
Factores Inmunológicos/administración & dosificación , Liposomas , Hemisuccinato de Metilprednisolona/administración & dosificación , Biomarcadores , Activación de Complemento/efectos de los fármacos , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Susceptibilidad a Enfermedades , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Liposomas/química , Masculino , Hemisuccinato de Metilprednisolona/farmacocinética , Polietilenglicoles/química
19.
Nanoscale ; 12(3): 1894-1903, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31904048

RESUMEN

The failure of cancer therapies in clinical settings is often attributed to the lack of a relevant tumor model and pathological heterogeneity across tumor types in the clinic. The objective of this study was to develop a robust in vivo tumor model that better represents clinical tumors for the evaluation of anti-cancer therapies. We successfully developed a simple mouse tumor model based on 3D cell culture by injecting a single spheroid and compared it to a tumor model routinely used by injecting cell suspension from 2D monolayer cell culture. We further characterized both tumors with cellular markers for the presence of myofibroblasts, pericytes, endothelial cells and extracellular matrix to understand the role of the tumor microenvironment. We further investigated the effect of chemotherapy (doxorubicin), nanomedicine (Doxil®), biological therapy (Avastin®) and their combination. Our results showed that the substantial blood vasculature in the 3D spheroid model enhances the delivery of Doxil® by 2.5-fold as compared to the 2D model. Taken together, our data suggest that the 3D tumors created by simple subcutaneous spheroid injection represents a robust and more vascular murine tumor model which is a clinically relevant platform to test anti-cancer therapy in solid tumors.


Asunto(s)
Bevacizumab/farmacología , Doxorrubicina/análogos & derivados , Neoplasias Experimentales , Neovascularización Patológica , Neoplasias Ováricas , Esferoides Celulares , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Femenino , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Polietilenglicoles/farmacología , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Control Release ; 316: 292-301, 2019 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-31715276

RESUMEN

Staphylococcus aureus is a major cause of severe invasive infections. The increasing incidence of infections caused by antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA), calls for exploration of new approaches to treat these infections. Mupirocin is an antibiotic with a unique mode of action that is active against MRSA, but its clinical use is restricted to topical administration because of its limited plasma stability and rapid degradation to inactive metabolites. Mupirocin was identified by a machine learning approach to be suitable for nano-liposome encapsulation. The computational predictions were verified experimentally and PEGylated nano-liposomal formulation of mupirocin (Nano-mupirocin) was developed. The aim of this study was to investigate the efficacy of this formulation when administered parenterally for the treatment of S. aureus invasive infections. Nano-mupirocin exhibited prolonged half-life of active antibiotic and displayed superior antimicrobial activity against S. aureus than free mupirocin in the presence of plasma. Parenteral application of Nano-mupirocin in a murine model of S. aureus bloodstream infection resulted in improved antibiotic distribution to infected organs and in a superior therapeutic efficacy than the free drug. Parenterally administered Nano-mupirocin was also more active against MRSA than free mupirocin in a neutropenic murine lung infection model. In addition, Nano-mupirocin was very efficiently taken up by S. aureus-infected macrophages via phagocytosis leading to enhanced delivery of mupirocin in the intracellular niche and to a more efficient elimination of intracellular staphylococci. The outcome of this study highlights the potential of Nano-mupirocin for the treatment of invasive MRSA infections and support the further clinical development of this effective therapeutic approach.


Asunto(s)
Antibacterianos/administración & dosificación , Mupirocina/administración & dosificación , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Femenino , Semivida , Liposomas , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Mupirocina/farmacocinética , Mupirocina/farmacología , Nanoestructuras , Infecciones Estafilocócicas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...