Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 21(214): 20230439, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807527

RESUMEN

We present a novel approach to traction force microscopy (TFM) for studying the locomotion of 10 cm long walking centipedes on soft substrates. Leveraging the remarkable elasticity and ductility of kudzu starch gels, we use them as a deformable gel substrate, providing resilience against the centipedes' sharp leg tips. By optimizing fiducial marker size and density and fine-tuning imaging conditions, we enhance measurement accuracy. Our TFM investigation reveals traction forces along the centipede's longitudinal axis that effectively counterbalance inertial forces within the 0-10 mN range, providing the first report of non-vanishing inertia forces in TFM studies. Interestingly, we observe waves of forces propagating from the head to the tail of the centipede, corresponding to its locomotion speed. Furthermore, we discover a characteristic cycle of leg clusters engaging with the substrate: forward force (friction) upon leg tip contact, backward force (traction) as the leg pulls the substrate while stationary, and subsequent forward force as the leg tip detaches to reposition itself in the anterior direction. This work opens perspectives for TFM applications in ethology, tribology and robotics.


Asunto(s)
Artrópodos , Locomoción , Locomoción/fisiología , Animales , Artrópodos/fisiología , Microscopía/métodos
2.
Lab Chip ; 20(21): 4016-4030, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-32975276

RESUMEN

Emerging evidence suggests the importance of mechanical stimuli in normal and pathological situations for the control of many critical cellular functions. While the effect of matrix stiffness has been and is still extensively studied, few studies have focused on the role of mechanical stresses. The main limitation of such analyses is the lack of standard in vitro assays enabling extended mechanical stimulation compatible with dynamic biological and biophysical cell characterization. We have developed an agarose-based microsystem, the soft cell confiner, which enables the precise control of confinement for single or mixed cell populations. The rigidity of the confiner matches physiological conditions and its porosity enables passive medium renewal. It is compatible with time-lapse microscopy, in situ immunostaining, and standard molecular analyses, and can be used with both adherent and non-adherent cell lines. Cell proliferation of various cell lines (hematopoietic cells, MCF10A epithelial breast cells and HS27A stromal cells) was followed for several days up to confluence using video-microscopy and further documented by Western blot and immunostaining. Interestingly, even though the nuclear projected area was much larger upon confinement, with many highly deformed nuclei (non-circular shape), cell viability, assessed by live and dead cell staining, was unaffected for up to 8 days in the confiner. However, there was a decrease in cell proliferation upon confinement for all cell lines tested. The soft cell confiner is thus a valuable tool to decipher the effects of long-term confinement and deformation on the biology of cell populations. This tool will be instrumental in deciphering the impact of nuclear and cytoskeletal mechanosensitivity in normal and pathological conditions involving highly confined situations, such as those reported upon aging with fibrosis or during cancer.


Asunto(s)
Núcleo Celular , Citoesqueleto , Proliferación Celular , Matriz Extracelular , Sefarosa
3.
Eur Phys J E Soft Matter ; 15(4): 427-38, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15611841

RESUMEN

In this paper we consider the effect of surface heterogeneity on the slippage of fluid, using two complementary approaches. First, MD simulations of a corrugated hydrophobic surface have been performed. A dewetting transition, leading to a super-hydrophobic state, is observed for pressure below a "capillary" pressure. Conversely, a very large slippage of the fluid on this composite interface is found in this super-hydrophobic state. Second, we propose a macroscopic estimate of the effective slip length on the basis of continuum hydrodynamics, in order to rationalize the previous MD results. This calculation allows to estimate the effect of a heterogeneous slip length pattern at the composite interface. Comparison between the two approaches shows that they are in good agreement at low pressure, but highlights the role of the exact shape of the liquid-vapor interface at higher pressure. These results confirm that small variations in the roughness of a surface can lead to huge differences in the slip effect. On the basis of these results, we propose some guidelines to design highly slippery surfaces, motivated by potential applications in microfluidics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA