Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 173: 105803, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171388

RESUMEN

Type 2 diabetes milletus (T2DM) is a complex multifaceted disorder characterized by insulin resistance in skeletal muscle. Phyllanthus niruri L. is well reported sub-tropical therapeutically beneficial ayurvedic medicinal plant from Euphorbiaceae family used in various body ailments such as metabolic disorder including diabetes. The present study emphasizes on the therapeutic potential of Phyllanthus niruri L. and its phytochemical(s) against insulin resistance conditions and impaired antioxidant activity thereby aiding as an anti-hyperglycemic agent in targeting T2DM. Three compounds were isolated from the most active ethyl acetate fraction namely compound 1 as 1-O-galloyl-6-O-luteoyl-ß-D-glucoside, compound 2 as brevifolincarboxylic acid and compound 3 as ricinoleic acid. Compounds 1 and 2, the two polyphenols enhanced the uptake of glucose and inhibited ROS levels in palmitate induced C2C12 myotubes. PNEAF showed the potent enhancement of glucose uptake in palmitate-induced insulin resistance condition in C2C12 myotubes and significant ROS inhibition was observed in skeletal muscle cell line. PNEAF treated IR C2C12 myotubes and STZ induced Wistar rats elevated SIRT1, PGC1-α signaling cascade through phosphorylation of AMPK and GLUT4 translocation resulting in insulin sensitization. Our study revealed an insight into the efficacy of marker compounds isolated from P. niruri and its enriched ethyl acetate fraction as ROS scavenging agent and helps in attenuating insulin resistance condition in C2C12 myotubes as well as in STZ induced Wistar rat by restoring glucose metabolism. Overall, this study can provide prospects for the marker-assisted development of P. niruri as a phytopharmaceutical drug for the insulin resistance related diabetic complications.


Asunto(s)
Acetatos , Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Phyllanthus , Ratas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1 , Ratas Wistar , Estructura Molecular , Fibras Musculares Esqueléticas , Insulina/metabolismo , Palmitatos/metabolismo , Músculo Esquelético/metabolismo
2.
Mol Omics ; 19(10): 787-799, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37534494

RESUMEN

The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.


Asunto(s)
Síndrome Metabólico , Ratas , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/prevención & control , Glucemia/análisis , Glucemia/metabolismo , Lysimachia , Fructosa , Ratas Sprague-Dawley , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fenotipo , Aminoácidos/metabolismo , Progresión de la Enfermedad , Candida/metabolismo
3.
Chem Biol Interact ; 371: 110347, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36627075

RESUMEN

Type 2 Diabetes Mellitus (T2DM) is characterized by hepatic insulin resistance, which results in increased glucose production and reduced glycogen storage in the liver. There is no previous study in the literature that has explored the role of Xanthosine in hepatic insulin resistance. Moreover, mechanistic explanation for the beneficial effects of Xanthosine in lowering glucose production in diabetes is yet to be determined. This study for the first time investigated the beneficial effects of Tribulus terrestris (TT) and its active constituent, Xanthosine on gluconeogenesis and glycogenesis in Free Fatty Acid (FFA)-induced CC1 hepatocytes and streptozotocin (STZ)-induced Wistar rats. Xanthosine enhanced glucose uptake and decreased glucose production through phosphorylation of AMP-activated protein kinase (AMPK) and forkhead box transcription factor O1 (FoxO1), and downregulation of two rate limiting enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression in FFA-induced CC1 cells. Xanthosine also prevented FFA-induced decreases in the phosphorylation of AKT/Protein kinase B, glycogen synthase kinase-3ß (GSK3ß), and increased glycogen synthase (GS) phosphorylation to increase the glycogen content in the hepatocytes. Moreover, in STZ-induced diabetic rats, oral administration of TT n-butanol fraction (TTBF) enriched with compound Xanthosine (10, 50 & 100 mg/kg body weight) improved insulin sensitivity, reduced fasting blood glucose levels, improved glucose homeostasis by reducing gluconeogenesis via AMPK/FoxO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via AKT/GSK3ß-mediated GS activation. Overall, Xanthosine may be developed further for treating insulin resistance and hyperglycemia in T2DM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratas , Animales , Gluconeogénesis , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicósidos/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratas Wistar , Hígado/metabolismo , Glucosa/metabolismo , Xantinas/farmacología , Glucógeno/metabolismo , Homeostasis
4.
Phytomedicine ; 93: 153761, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34715512

RESUMEN

BACKGROUND: Premna herbacea Roxb., a perennial herb is well documented for its therapeutic uses among the traditional health care-givers of Assam, India. Scientific validation on the traditional use of the medicinal plant using modern technology may promote further research in health care. PURPOSE: This study evaluates the therapeutic potential of methanolic extract of P. herbacea (MEPH) against type 2 diabetes mellitus (T2DM) and its phytochemical(s) in ameliorating insulin resistance (IR), thereby endorsing the plant bioactives as effective anti-hyperglycemic agents. METHODS: The anti-diabetic potential of the plant extract was explored both in L6 muscle cells and high fructose high fat diet (HF-HFD) fed male Sprague Dawley (SD) rats. Bioactivity guided fractionation and isolation procedure yielded Verbascoside and Isoverbascoside (ISOVER) as bioactive and major phytochemicals in P. herbacea. The bioenergetics profile of bioactive ISOVER and its anti-hyperglycemic potential was validated in vitro by XFe24 analyzer, glucose uptake assay and intracellular ROS generation by flourometer, FACS and confocal microscopy. The potential of ISOVER was also checked by screening various protein markers via immunoblotting. RESULTS: MEPH enhanced glucose uptake in FFA-induced insulin resistant (IR) L6 muscle cells and decreased elevated blood glucose levels in HF-HFD fed rats. Isoverbascoside (ISOVER) was identified as most bioactive phytochemical for the first time from the plant in the Premna genus. ISOVER activated the protein kinase B/AMP-activated protein kinase signaling cascades and enhanced glucose uptake in IR-L6 muscle cells. ISOVER decreased the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) and increased that of mammalian target of rapamycin (mTOR), thereby attenuating IR. However, molecular docking revealed that ISOVER increases insulin sensitivity by targeting the JNK1 kinase as a competitive inhibitor rather than mTOR. These findings were further supported by the bioenergetics profile of ISOVER. CONCLUSION: This study for the first time depicts the functional properties of ISOVER, derived from Premna herbacea, in ameliorating IR. The phytochemical significantly altered IR with enhanced glucose uptake and inhibition of ROS through JNK-AKT/mTOR signaling which may pave the way for further research in T2DM therapeutics.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Metabolismo Energético , Glucosa , Glucósidos , Insulina/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Células Musculares/metabolismo , Fenoles , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo
5.
Arch Biochem Biophys ; 708: 108961, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118216

RESUMEN

Oxidative stress resulting from the depletion of glutathione (GSH) level plays a vital role in generating various degenerative diseases, including type 2 diabetes (T2D). We tested the hypothesis that depleted glutathione levels can be enhanced and the impaired glucose metabolism can be prevented by supplementing Allium hookeri, a herb rich in organosulfur compounds, in a High Fat (HF) diet-induced T2D Male Sprague Dawley rat model. The experimental rats were divided into three groups (n = 6), namely normal diet, high-fat diet, and high-fat diet treated with A.hookeri methanolic leaf extract (250 mg/kg). Consumption of HF diet along with the plant extract resulted in significant reduction of the body weight (7.08%-14.89%) and blood glucose level (6.5%-16.4%) from the 13th week onward. There was a significant decrease in reactive oxygen species, oxidized glutathione (GSSG) levels, and an increase in GSH level in skeletal muscle tissues supplemented with the plant extract. The protein expressions of the signaling molecules such as GCLC and GR involved in GSH synthesis and of GLUT4 in glucose transport were also upregulated in the skeletal muscle tissues of the plant extract-treated group. Results of in vitro studies with muscle cell line (L6) further demonstrated the beneficial effect of the plant extract in increasing glucose uptake and maintaining the GSH/GSSH equilibrium via regulation of protein expression of GCLC/GR/GLUT4 signaling molecules in sodium palmitate (0.75 mM) treated cells. Overall this study suggests that dietary supplementation with Allium hookeri, can restore the glutathione level and regulate the blood glucose level in T2D.


Asunto(s)
Allium/química , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glutatión/biosíntesis , Metanol/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Masculino , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...