Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Intervalo de año de publicación
1.
ACS Omega ; 8(37): 34084-34090, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744849

RESUMEN

In tropical and subtropical areas, malaria stands as a profound public health challenge, causing an estimated 247 million cases worldwide annually. Given the absence of a viable vaccine, the timely and effective treatment of malaria remains a critical priority. However, the growing resistance of parasites to currently utilized drugs underscores the critical need for the identification of new antimalarial therapies. Here, we aimed to identify potential new drug candidates against Plasmodium falciparum, the main causative agent of malaria, by analyzing the transcriptomes of different life stages of the parasite and identifying highly expressed genes. We searched for genes that were expressed in all stages of the parasite's life cycle, including the asexual blood stage, gametocyte stage, liver stage, and sexual stages in the insect vector, using transcriptomics data from publicly available databases. From this analysis, we found 674 overlapping genes, including 409 essential ones. By searching through drug target databases, we discovered 70 potential drug targets and 75 associated bioactive compounds. We sought to expand this analysis to similar compounds to known drugs. So, we found a list of 1557 similar compounds, which we predicted as actives and inactives using previously developed machine learning models against five life stages of Plasmodium spp. From this analysis, two compounds were selected, and the reactions were experimentally evaluated. The compounds HSP-990 and silvestrol aglycone showed potent inhibitory activity at nanomolar concentrations against the P. falciparum 3D7 strain asexual blood stage. Moreover, silvestrol aglycone exhibited low cytotoxicity in mammalian cells, transmission-blocking potential, and inhibitory activity comparable to those of established antimalarials. These findings warrant further investigation of silvestrol aglycone as a potential dual-acting antimalarial and transmission-blocking candidate for malaria control.

2.
J Control Release ; 361: 385-401, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562555

RESUMEN

Malaria is a global parasitic infection that leads to substantial illness and death. The most commonly-used drugs for treatment of malaria vivax are primaquine and chloroquine, but they have limitations, such as poor adherence due to frequent oral administration and gastrointestinal side effects. To overcome these limitations, we have developed nano-sized solid dispersion-based dissolving microarray patches (MAPs) for the intradermal delivery of these drugs. In vitro testing showed that these systems can deliver to skin and receiver compartment up to ≈60% of the payload for CQ-based dissolving MAPs and a total of ≈42% of drug loading for PQ-based dissolving MAPs. MAPs also displayed acceptable biocompatibility in cell tests. Pharmacokinetic studies in rats showed that dissolving MAPs could deliver sustained plasma levels of both PQ and CQ for over 7 days. Efficacy studies in a murine model for malaria showed that mice treated with PQ-MAPs and CQ-MAPs had reduced parasitaemia by up to 99.2%. This pharmaceutical approach may revolutionise malaria vivax treatment, especially in developing countries where the disease is endemic. The development of these dissolving MAPs may overcome issues associated with current pharmacotherapy and improve patient outcomes.


Asunto(s)
Antimaláricos , Malaria Vivax , Animales , Ratones , Ratas , Primaquina/uso terapéutico , Primaquina/farmacología , Cloroquina , Plasmodium vivax , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología
3.
Antimicrob Agents Chemother ; 67(4): e0146522, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36856421

RESUMEN

Safe and effective malaria transmission-blocking chemotherapeutics would allow a community-level approach to malaria control and eradication efforts by targeting the mosquito sexual stage of the parasite life cycle. However, only a single drug, primaquine, is currently approved for use in reducing transmission, and drug toxicity limits its widespread implementation. To address this limitation in antimalarial chemotherapeutics, we used a recently developed transgenic Plasmodium berghei line, Ookluc, to perform a series of high-throughput in vitro screens for compounds that inhibit parasite fertilization, the initial step of parasite development within the mosquito. Screens of antimalarial compounds, approved drug collections, and drug-like molecule libraries identified 185 compounds that inhibit parasite maturation to the zygote form. Seven compounds were further characterized to block gametocyte activation or to be cytotoxic to formed zygotes. These were further validated in mosquito membrane-feeding assays using Plasmodium falciparum and P. vivax. This work demonstrates that high-throughput screens using the Ookluc line can identify compounds that are active against the two most relevant human Plasmodium species and provides a list of compounds that can be explored for the development of new antimalarials to block transmission.


Asunto(s)
Antimaláricos , Culicidae , Malaria Falciparum , Malaria Vivax , Malaria , Animales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium berghei , Ensayos Analíticos de Alto Rendimiento , Malaria/prevención & control , Primaquina/uso terapéutico , Plasmodium falciparum , Malaria Vivax/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico
4.
ChemMedChem ; 16(7): 1093-1103, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33247522

RESUMEN

Increasing reports of multidrug-resistant malaria parasites urge the discovery of new effective drugs with different chemical scaffolds. Protein kinases play a key role in many cellular processes such as signal transduction and cell division, making them interesting targets in many diseases. Protein kinase 7 (PK7) is an orphan kinase from the Plasmodium genus, essential for the sporogonic cycle of these parasites. Here, we applied a robust and integrative artificial intelligence-assisted virtual-screening (VS) approach using shape-based and machine learning models to identify new potential PK7 inhibitors with in vitro antiplasmodial activity. Eight virtual hits were experimentally evaluated, and compound LabMol-167 inhibited ookinete conversion of Plasmodium berghei and blood stages of Plasmodium falciparum at nanomolar concentrations with low cytotoxicity in mammalian cells. As PK7 does not have an essential role in the Plasmodium blood stage and our virtual screening strategy aimed for both PK7 and blood-stage inhibition, we conducted an in silico target fishing approach and propose that this compound might also inhibit P. falciparum PK5, acting as a possible dual-target inhibitor. Finally, docking studies of LabMol-167 with P. falciparum PK7 and PK5 proteins highlighted key interactions for further hit-to lead optimization.


Asunto(s)
Antimaláricos/farmacología , Inteligencia Artificial , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad
5.
ACS Pharmacol Transl Sci ; 3(5): 948-964, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33073193

RESUMEN

Drug resistance is a constant threat to malaria control efforts making it important to maintain a good pipeline of new drug candidates. Of particular need are compounds that also block transmission by targeting sexual stage parasites. Mature sexual stages are relatively resistant to all currently used antimalarials except the 8-aminoquinolines that are not commonly used due to potential side effects. Here, we synthesized a new Torin 2 derivative, NCATS-SM3710 with increased aqueous solubility and specificity for Plasmodium and demonstrate potent in vivo activity against all P. berghei life cycle stages. NCATS-SM3710 also has low nanomolar EC50s against in vitro cultured asexual P. falciparum parasites (0.38 ± 0.04 nM) and late stage gametocytes (5.77 ± 1 nM). Two independent NCATS-SM3710/Torin 2 resistant P. falciparum parasite lines produced by growth in sublethal Torin 2 concentrations both had genetic changes in PF3D7_0509800, annotated as a phosphatidylinositol 4 kinase (Pf PI4KIIIß). One line had a point mutation in the putative active site (V1357G), and the other line had a duplication of a locus containing Pf PI4KIIIß. Both lines were also resistant to other Pf PI4K inhibitors. In addition NCATS-SM3710 inhibited purified Pf PI4KIIIß with an IC50 of 2.0 ± 0.30 nM. Together the results demonstrate that Pf PI4KIIIß is the target of Torin 2 and NCATS-SM3710 and provide new options for potent multistage drug development.

6.
J Venom Anim Toxins Incl Trop Dis ; 26: e20190061, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32362926

RESUMEN

Two years ago, we held an exciting event entitled the São Paulo School of Advanced Sciences on Vaccines (SPSASV). Sixty-eight Ph.D. students, postdoctoral fellows and independent researchers from 37 different countries met at the Mendes Plaza Hotel located in the city of Santos, SP - Brazil to discuss the challenges and the new frontiers of vaccinology. The SPSASV provided a critical and comprehensive view of vaccine research from basics to the current state-of-the-art techniques performed worldwide. For 10 days, we discussed all the aspects of vaccine development in 36 lectures, 53 oral presentations and 2 poster sessions. At the end of the course, participants were further encouraged to present a model of a grant proposal related to vaccine development against individual pathogens. Among the targeted pathogens were viruses (Chikungunya, HIV, RSV, and Influenza), bacteria (Mycobacterium tuberculosis and Streptococcus pyogenes), parasites (Plasmodium falciparum or Plasmodium vivax), and the worm Strongyloides stercoralis. This report highlights some of the knowledge shared at the SPSASV.

7.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1091021

RESUMEN

Two years ago, we held an exciting event entitled the São Paulo School of Advanced Sciences on Vaccines (SPSASV). Sixty-eight Ph.D. students, postdoctoral fellows and independent researchers from 37 different countries met at the Mendes Plaza Hotel located in the city of Santos, SP - Brazil to discuss the challenges and the new frontiers of vaccinology. The SPSASV provided a critical and comprehensive view of vaccine research from basics to the current state-of-the-art techniques performed worldwide. For 10 days, we discussed all the aspects of vaccine development in 36 lectures, 53 oral presentations and 2 poster sessions. At the end of the course, participants were further encouraged to present a model of a grant proposal related to vaccine development against individual pathogens. Among the targeted pathogens were viruses (Chikungunya, HIV, RSV, and Influenza), bacteria (Mycobacterium tuberculosis and Streptococcus pyogenes), parasites (Plasmodium falciparum or Plasmodium vivax), and the worm Strongyloides stercoralis. This report highlights some of the knowledge shared at the SPSASV.(AU)


Asunto(s)
Instituciones Académicas , Vacunas , Técnicas Inmunológicas/métodos , Informe de Investigación , Vacunología , Concentración de Iones de Hidrógeno
8.
Front Chem ; 7: 773, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824917

RESUMEN

Malaria is a tropical infectious disease that affects over 219 million people worldwide. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new antimalarial drugs is a global health priority. Multi-target drug discovery is a promising and innovative strategy for drug discovery and it is currently regarded as one of the best strategies to face drug resistance. Aiming to identify new multi-target antimalarial drug candidates, we developed an integrative computational approach to select multi-kinase inhibitors for Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4) and protein kinase 6 (PK6). For this purpose, we developed and validated shape-based and machine learning models to prioritize compounds for experimental evaluation. Then, we applied the best models for virtual screening of a large commercial database of drug-like molecules. Ten computational hits were experimentally evaluated against asexual blood stages of both sensitive and multi-drug resistant P. falciparum strains. Among them, LabMol-171, LabMol-172, and LabMol-181 showed potent antiplasmodial activity at nanomolar concentrations (EC50 ≤ 700 nM) and selectivity indices >15 folds. In addition, LabMol-171 and LabMol-181 showed good in vitro inhibition of P. berghei ookinete formation and therefore represent promising transmission-blocking scaffolds. Finally, docking studies with protein kinases CDPK1, CDPK4, and PK6 showed structural insights for further hit-to-lead optimization studies.

9.
Future Med Chem ; 11(20): 2635-2646, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31556721

RESUMEN

Aim: Computer-aided drug design approaches were applied to identify chalcones with antiplasmodial activity. Methodology: The virtual screening was performed as follows: structural standardization of in-house database of chalcones; identification of potential Plasmodium falciparum protein targets for the chalcones; homology modeling of the predicted P. falciparum targets; molecular docking studies; and in vitro experimental validation. Results: Using these models, we prioritized 16 chalcones with potential antiplasmodial activity, for further experimental evaluation. Among them, LabMol-86 and LabMol-87 showed potent in vitro antiplasmodial activity against P. falciparum, while LabMol-63 and LabMol-73 were potent inhibitors of Plasmodium berghei progression into mosquito stages. Conclusion: Our results encourage the exploration of chalcones in hit-to-lead optimization studies for tackling malaria.


Asunto(s)
Antimaláricos/farmacología , Chalconas/farmacología , Diseño Asistido por Computadora , Diseño de Fármacos , Malaria/tratamiento farmacológico , Antimaláricos/uso terapéutico , Humanos
10.
Cell Host Microbe ; 25(5): 631-632, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071289

RESUMEN

In recent work, Paton et al. (2019) report that mosquitoes exposed to atovaquone, a known antimalarial, are resistant to infection by the malaria parasite Plasmodium. Their results may be the foundation for the discovery of a new arsenal of antimalarials.


Asunto(s)
Anopheles , Antimaláricos , Malaria , Parásitos , Plasmodium , Animales
11.
Artículo en Inglés | MEDLINE | ID: mdl-30181368

RESUMEN

Malaria remains an important parasitic disease with a large morbidity and mortality burden. Plasmodium transmission-blocking (TB) compounds are essential for achieving malaria elimination efforts. Recent efforts to develop high-throughput screening (HTS) methods to identify compounds that inhibit or kill gametocytes, the Plasmodium sexual stage infectious to mosquitoes, have yielded insight into new TB compounds. However, the activities of these compounds against gametes, formed in the first minutes of mosquito infection, are typically not assessed, unless screened in a standard membrane feeding assay, a labor-intensive assay. We demonstrate here the generation of a Plasmodium model for drug screens against gametes and fertilization. The new P. berghei line, named Ookluc, was genetically and pharmacologically validated and scalable for HTS. Screening the Pathogen Box from the Medicines for Malaria Venture using the new model identified promising TB compounds. The use of Ookluc in different libraries of compounds may aid in the identification of transmission-blocking drugs not assessed in screens against asexual stages or gametocytes.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Animales , Culicidae/parasitología , Luciferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación
12.
Front Pharmacol ; 9: 146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29559909

RESUMEN

Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium, affecting more than 200 million people worldwide every year and leading to about a half million deaths. Malaria parasites of humans have evolved resistance to all current antimalarial drugs, urging for the discovery of new effective compounds. Given that the inhibition of deoxyuridine triphosphatase of Plasmodium falciparum (PfdUTPase) induces wrong insertions in plasmodial DNA and consequently leading the parasite to death, this enzyme is considered an attractive antimalarial drug target. Using a combi-QSAR (quantitative structure-activity relationship) approach followed by virtual screening and in vitro experimental evaluation, we report herein the discovery of novel chemical scaffolds with in vitro potency against asexual blood stages of both P. falciparum multidrug-resistant and sensitive strains and against sporogonic development of P. berghei. We developed 2D- and 3D-QSAR models using a series of nucleosides reported in the literature as PfdUTPase inhibitors. The best models were combined in a consensus approach and used for virtual screening of the ChemBridge database, leading to the identification of five new virtual PfdUTPase inhibitors. Further in vitro testing on P. falciparum multidrug-resistant (W2) and sensitive (3D7) parasites showed that compounds LabMol-144 and LabMol-146 demonstrated fair activity against both strains and presented good selectivity versus mammalian cells. In addition, LabMol-144 showed good in vitro inhibition of P. berghei ookinete formation, demonstrating that hit-to-lead optimization based on this compound may also lead to new antimalarials with transmission blocking activity.

13.
Malar J ; 17(1): 20, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29316918

RESUMEN

BACKGROUND: Technical limitations for culturing the human malaria parasite Plasmodium vivax have impaired the discovery of vaccine candidates, challenging the malaria eradication agenda. The immunogenicity of the M2 domain of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) antigen cloned from the Plasmodium yoelii murine parasite, has been previously demonstrated. RESULTS: Detailed epitope mapping of MAEBL through immunoinformatics identified several MHCI, MHCII and B cell epitopes throughout the peptide, with several of these lying in the M2 domain and being conserved between P. vivax, P. yoelii and Plasmodium falciparum, hinting that the M2-MAEBL is pan-reactive. This hypothesis was tested through functional assays, showing that P. yoelii M2-MAEBL antisera are able to recognize and inhibit erythrocyte invasion from both P. falciparum and P. vivax parasites isolated from Thai patients, in ex vivo assays. Moreover, the sequence of the M2-MAEBL is shown to be highly conserved between P. vivax isolates from the Amazon and Thailand, indicating that the MAEBL antigen may constitute a vaccine candidate outwitting strain-specific immunity. CONCLUSIONS: The MAEBL antigen is promising candidate towards the development of a malaria vaccine.


Asunto(s)
Antígenos de Protozoos/inmunología , Mapeo Epitopo , Plasmodium yoelii/inmunología , Proteínas Protozoarias/inmunología , Animales , Antígenos de Protozoos/genética , Biología Computacional , Secuencia Conservada , Epítopos/genética , Epítopos/inmunología , Humanos , Vacunas contra la Malaria/aislamiento & purificación , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control , Ratones Endogámicos C57BL , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Plasmodium yoelii/genética , Proteínas Protozoarias/genética , Tailandia
14.
Front Immunol ; 8: 1275, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075260

RESUMEN

Plasmodium vivax is the most common species that cause malaria outside of the African continent. The development of an efficacious vaccine would contribute greatly to control malaria. Recently, using bacterial and adenoviral recombinant proteins based on the P. vivax circumsporozoite protein (CSP), we demonstrated the possibility of eliciting strong antibody-mediated immune responses to each of the three allelic forms of P. vivax CSP (PvCSP). In the present study, recombinant proteins representing the PvCSP alleles (VK210, VK247, and P. vivax-like), as well as a hybrid polypeptide, named PvCSP-All epitopes, were generated. This hybrid containing the conserved C-terminal of the PvCSP and the three variant repeat domains in tandem were successfully produced in the yeast Pichia pastoris. After purification and biochemical characterization, they were used for the experimental immunization of C57BL/6 mice in a vaccine formulation containing the adjuvant Poly(I:C). Immunization with a recombinant protein expressing all three different allelic forms in fusion elicited high IgG antibody titers reacting with all three different allelic variants of PvCSP. The antibodies targeted both the C-terminal and repeat domains of PvCSP and recognized the native protein on the surface of P. vivax sporozoites. More importantly, mice that received the vaccine formulation were protected after challenge with chimeric Plasmodium berghei sporozoites expressing CSP repeats of P. vivax sporozoites (Pb/PvVK210). Our results suggest that it is possible to elicit protective immunity against one of the most common PvCSP alleles using soluble recombinant proteins expressed by P. pastoris. These recombinant proteins are promising candidates for clinical trials aiming to develop a multiallele vaccine against P. vivax malaria.

15.
Cell Host Microbe ; 20(5): 618-630, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27832590

RESUMEN

Surface-associated TRAP (thrombospondin-related anonymous protein) family proteins are conserved across the phylum of apicomplexan parasites. TRAP proteins are thought to play an integral role in parasite motility and cell invasion by linking the extracellular environment with the parasite submembrane actomyosin motor. Blood stage forms of the malaria parasite Plasmodium express a TRAP family protein called merozoite-TRAP (MTRAP) that has been implicated in erythrocyte invasion. Using MTRAP-deficient mutants of the rodent-infecting P. berghei and human-infecting P. falciparum parasites, we show that MTRAP is dispensable for erythrocyte invasion. Instead, MTRAP is essential for gamete egress from erythrocytes, where it is necessary for the disruption of the gamete-containing parasitophorous vacuole membrane, and thus for parasite transmission to mosquitoes. This indicates that motor-binding TRAP family members function not just in parasite motility and cell invasion but also in membrane disruption and cell egress.


Asunto(s)
Eritrocitos/parasitología , Exocitosis , Merozoítos/fisiología , Plasmodium berghei/fisiología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Vacuolas/parasitología , Animales , Culicidae , Humanos , Membranas/metabolismo , Ratones
16.
Infect Immun ; 83(10): 3781-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169268

RESUMEN

Malaria remains a world-threatening disease largely because of the lack of a long-lasting and fully effective vaccine. MAEBL is a type 1 transmembrane molecule with a chimeric cysteine-rich ectodomain homologous to regions of the Duffy binding-like erythrocyte binding protein and apical membrane antigen 1 (AMA1) antigens. Although MAEBL does not appear to be essential for the survival of blood-stage forms, ectodomains M1 and M2, homologous to AMA1, seem to be involved in parasite attachment to erythrocytes, especially M2. MAEBL is necessary for sporozoite infection of mosquito salivary glands and is expressed in liver stages. Here, the Plasmodium yoelii MAEBL-M2 domain was expressed in a prokaryotic vector. C57BL/6J mice were immunized with doses of P. yoelii recombinant protein rPyM2-MAEBL. High levels of antibodies, with balanced IgG1 and IgG2c subclasses, were achieved. rPyM2-MAEBL antisera were capable of recognizing the native antigen. Anti-MAEBL antibodies recognized different MAEBL fragments expressed in CHO cells, showing stronger IgM and IgG responses to the M2 domain and repeat region, respectively. After a challenge with P. yoelii YM (lethal strain)-infected erythrocytes (IE), up to 90% of the immunized animals survived and a reduction of parasitemia was observed. Moreover, splenocytes harvested from immunized animals proliferated in a dose-dependent manner in the presence of rPyM2-MAEBL. Protection was highly dependent on CD4(+), but not CD8(+), T cells toward Th1. rPyM2-MAEBL antisera were also able to significantly inhibit parasite development, as observed in ex vivo P. yoelii erythrocyte invasion assays. Collectively, these findings support the use of MAEBL as a vaccine candidate and open perspectives to understand the mechanisms involved in protection.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Plasmodium yoelii/inmunología , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Eritrocitos/parasitología , Femenino , Humanos , Inmunización , Malaria/inmunología , Malaria/mortalidad , Malaria/parasitología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Masculino , Merozoítos/química , Merozoítos/crecimiento & desarrollo , Merozoítos/inmunología , Ratones , Ratones Endogámicos C57BL , Plasmodium yoelii/química , Plasmodium yoelii/genética , Plasmodium yoelii/crecimiento & desarrollo , Estructura Terciaria de Proteína , Proteínas Protozoarias/administración & dosificación , Proteínas Protozoarias/genética , Esporozoítos/química , Esporozoítos/crecimiento & desarrollo , Esporozoítos/inmunología
17.
Nat Commun ; 4: 2552, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24108241

RESUMEN

Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1-rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans.


Asunto(s)
Antígenos de Protozoos/genética , Interacciones Huésped-Parásitos , Proteínas de la Membrana/genética , Plasmodium berghei/genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/metabolismo , Secuencia Conservada , Femenino , Eliminación de Gen , Expresión Génica , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidad , Unión Proteica , Proteínas Protozoarias/metabolismo , Ratas , Ratas Wistar , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología
18.
Methods Mol Biol ; 923: 371-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22990792

RESUMEN

Sporozoites, the stage of Plasmodium infectious to vertebrates when injected in the skin by a mosquito vector, are highly motile cells. Their unusual form of gliding motility is essential for infectivity, allowing the parasite to travel through both the mosquito and mammalian hosts, invading different cell types and escaping immune cell-mediated death. In this chapter, we describe techniques to study gliding motility of sporozoites in vitro and in vivo.


Asunto(s)
Movimiento Celular , Plasmodium/crecimiento & desarrollo , Esporozoítos/metabolismo , Animales , Culicidae/parasitología , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Microscopía/métodos , Plasmodium/fisiología
19.
Nat Protoc ; 6(9): 1412-28, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21886105

RESUMEN

We describe here a highly efficient procedure for conditional mutagenesis in Plasmodium. The procedure uses the site-specific recombination FLP-FRT system of yeast and targets the pre-erythrocytic stages of the rodent Plasmodium parasite P. berghei, including the sporozoite stage and the subsequent liver stage. The technique consists of replacing the gene under study by an FRTed copy (i.e., flanked by FRT sites) in the erythrocytic stages of a parasite clone that expresses the flip (FLP) recombinase stage-specifically--called the 'deleter' clone. We present the available deleter clones, which express FLP at different times of the parasite life cycle, as well as the schemes and tools for constructing new deleter parasites. We also outline and discuss the various strategies for exchanging a wild-type gene with an FRTed copy and for generating conditional gene knockout or knockdown parasite clones. Finally, we detail the protocol for obtaining sporozoites that lack a protein of interest and for monitoring sporozoite-specific DNA excision and depletion of the target protein. The protocol should allow the functional analysis of any essential protein in the sporozoite, liver stage or hepatic merozoite stages of rodent Plasmodium parasites.


Asunto(s)
Ingeniería Genética/métodos , Mutagénesis Sitio-Dirigida/métodos , Plasmodium berghei/genética , Animales , Anopheles/parasitología , Técnicas de Inactivación de Genes , Ratones , Ratas , Ratas Wistar , Recombinación Genética , Esporozoítos/fisiología
20.
Mol Microbiol ; 81(5): 1343-57, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21752110

RESUMEN

Transmission of Plasmodium species from a mammalian host to the mosquito vector requires the uptake, during an infected blood meal, of gametocytes, the precursor cells of the gametes. Relatively little is known about the molecular mechanisms involved in the developmental switch from asexual development to sexual differentiation or the maturation and survival of gametocytes. Here, we show that a gene coding for a novel putative transporter, NPT1, plays a crucial role in the development of Plasmodium berghei gametocytes. Parasites lacking NPT1 are severely compromised in the production of gametocytes and the rare gametocytes produced are unable to differentiate into fertile gametes. This is the earliest block in gametocytogenesis obtained by reverse genetics and the first to demonstrate the role of a protein with a putative transport function in sexual development. These results and the high degree of conservation of NPT1 in Plasmodium species suggest that this protein could be an attractive target for the development of novel drugs to block the spread of malaria.


Asunto(s)
Gametogénesis/fisiología , Plasmodium berghei/metabolismo , Diferenciación Sexual/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Animales , Culicidae/parasitología , Eritrocitos/parasitología , Gametogénesis/genética , Expresión Génica , Interacciones Huésped-Parásitos , Malaria/metabolismo , Malaria/patología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...