Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Membr Biol ; 189(1): 55-66, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12202952

RESUMEN

The genome of Caenorhabditis elegans contains representatives of the channel families found in both vertebrate and invertebrate nervous systems. However, it lacks the ubiquitous Hodgkin-Huxley Na+ channel that is integral to long-distance signaling in other animals. Nematode neurons are presumed to communicate by electrotonic conduction and graded depolarizations. This fundamental difference in operating principle may require different channel populations to regulate transmission and transmitter release. We have sampled ionic channels from the somata of two chemosensory neurons (AWA and AWC) of C. elegans. A Ca2+-activated, outwardly rectifying channel has a conductance of 67 pS and a reversal potential indicating selectivity for K+. An inwardly rectifying channel is active at potentials more negative than -50 mV. The inward channel is notably flickery even in the absence of divalent cations; this prevented determination of its conductance and reversal potential. Both of these channels were inactive over a range of membrane potentials near the likely cell resting potential; this would account for the region of very high membrane resistance observed in whole-cell recordings. A very-large-conductance (> 100 pS), inwardly rectifying channel may account for channel-like fluctuations seen in whole-cell recordings.


Asunto(s)
Caenorhabditis elegans/fisiología , Neuronas Receptoras Olfatorias/fisiología , Canales de Potasio/fisiología , Animales , Conductividad Eléctrica , Canales Iónicos/fisiología , Potenciales de la Membrana/fisiología , Canales de Potasio/clasificación , Canales de Potasio Calcio-Activados/fisiología , Sensibilidad y Especificidad
2.
Nat Neurosci ; 4 Suppl: 1169-76, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11687826

RESUMEN

To reach their proper targets, axons rely upon the actions of highly conserved families of attractive and repulsive guidance molecules, including the netrins, Slits, semaphorins and ephrins. These guidance systems are used to generate an astonishingly varied set of neuronal circuits. Here we consider the mechanisms by which a few guidance systems can be used to generate diverse outcomes. Recent studies have revealed extensive transcriptional and post-transcriptional regulation of guidance cues and their receptors, as well as combinatorial mechanisms that integrate information from different families of guidance cues.


Asunto(s)
Comunicación Celular/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Sistema Nervioso/embriología , Vías Nerviosas/embriología , Animales , Conos de Crecimiento/ultraestructura , Humanos , Factores de Crecimiento Nervioso/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
3.
Development ; 128(22): 4475-88, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11714673

RESUMEN

The Caenorhabditis elegans genome contains three rac-like genes, ced-10, mig-2, and rac-2. We report that ced-10, mig-2 and rac-2 act redundantly in axon pathfinding: inactivating one gene had little effect, but inactivating two or more genes perturbed both axon outgrowth and guidance. mig-2 and ced-10 also have redundant functions in some cell migrations. By contrast, ced-10 is uniquely required for cell-corpse phagocytosis, and mig-2 and rac-2 have only subtle roles in this process. Rac activators are also used differentially. The UNC-73 Trio Rac GTP exchange factor affected all Rac pathways in axon pathfinding and cell migration but did not affect cell-corpse phagocytosis. CED-5 DOCK180, which acts with CED-10 Rac in cell-corpse phagocytosis, acted with MIG-2 but not CED-10 in axon pathfinding. Thus, distinct regulatory proteins modulate Rac activation and function in different developmental processes.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Movimiento Celular , Fagocitosis , Proteínas de Unión al GTP rac/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/embriología , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rac/genética , Proteína RCA2 de Unión a GTP
4.
Neuron ; 32(1): 25-38, 2001 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-11604136

RESUMEN

Robo receptors interact with ligands of the Slit family. The nematode C. elegans has one Robo receptor (SAX-3) and one Slit protein (SLT-1), which direct ventral axon guidance and guidance at the midline. In larvae, slt-1 expression in dorsal muscles repels axons to promote ventral guidance. SLT-1 acts through the SAX-3 receptor, in parallel with the ventral attractant UNC-6 (Netrin). Removing both UNC-6 and SLT-1 eliminates all ventral guidance information for some axons, revealing an underlying longitudinal guidance pathway. In the embryo, slt-1 is expressed at high levels in anterior epidermis. Embryonic expression of SLT-1 provides anterior-posterior guidance information to migrating CAN neurons. Surprisingly, slt-1 mutants do not exhibit the nerve ring and epithelial defects of sax-3 mutants, suggesting that SAX-3 has both Slit-dependent and Slit-independent functions in development.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Animales , Caenorhabditis elegans , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Indicadores y Reactivos/metabolismo , Proteínas Luminiscentes/genética , Músculos/inervación , Músculos/fisiología , Mutagénesis/fisiología , Proteínas del Tejido Nervioso/química , Netrinas , Neuronas/fisiología , Neuronas/ultraestructura , Estructura Terciaria de Proteína , Proteínas Roundabout
5.
Proc Natl Acad Sci U S A ; 98(20): 11032-8, 2001 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-11572964

RESUMEN

Changes in the environment cause both short-term and long-term changes in an animal's behavior. Here we show that specific sensory experiences cause changes in chemosensory receptor gene expression that may alter sensory perception in the nematode Caenorhabditis elegans. Three predicted chemosensory receptor genes expressed in the ASI chemosensory neurons, srd-1, str-2, and str-3, are repressed by exposure to the dauer pheromone, a signal of crowding. Repression occurs at pheromone concentrations below those that induce formation of the alternative dauer larva stage, suggesting that exposure to pheromones can alter the chemosensory behaviors of non-dauer animals. In addition, ASI expression of srd-1, but not str-2 and str-3, is induced by sensory activity of the ASI neurons. Expression of two receptor genes is regulated by developmental entry into the dauer larva stage. srd-1 expression in ASI neurons is repressed in dauer larvae. str-2 expression in dauer animals is induced in the ASI neurons, but repressed in the AWC neurons. The ASI and AWC neurons remodel in the dauer stage, and these results suggest that their sensory specificity changes as well. We suggest that experience-dependent changes in chemosensory receptor gene expression may modify olfactory behaviors.


Asunto(s)
Caenorhabditis elegans/fisiología , Células Quimiorreceptoras/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Genes de Helminto , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Feromonas/fisiología
6.
Neuron ; 31(2): 277-87, 2001 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-11502258

RESUMEN

Odorant receptors and signaling proteins are localized to sensory cilia on olfactory dendrites. Using a GFP-tagged odorant receptor protein, Caenorhabditis elegans ODR-10, we characterized protein sorting and transport in olfactory neurons in vivo. ODR-10 is transported in rapidly moving dendritic vesicles that shuttle between the cell body and the cilia. Anterograde and retrograde vesicles move at different speeds, suggesting that dendrites have polarized transport mechanisms. Residues immediately after the seventh membrane-spanning domain of ODR-10 are required for localization; these residues are conserved in many G protein-coupled receptors. UNC-101 encodes a mu1 subunit of the AP-1 clathrin adaptor complex. In unc-101 mutants, dendritic vesicles are absent, ODR-10 receptor is evenly distributed over the plasma membrane, and other cilia membrane proteins are also mislocalized, implicating AP-1 in protein sorting to olfactory cilia.


Asunto(s)
Proteínas de Caenorhabditis elegans , Cilios/metabolismo , Dendritas/metabolismo , Proteínas del Helminto/metabolismo , Neuronas Receptoras Olfatorias/ultraestructura , Receptores Odorantes/análisis , Secuencia de Aminoácidos , Animales , Transporte Axonal , Transporte Biológico , Caenorhabditis elegans/genética , Cilios/química , Clatrina/metabolismo , Proteínas Fluorescentes Verdes , Proteínas del Helminto/análisis , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutagénesis , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas Recombinantes de Fusión
7.
Neuron ; 30(1): 241-8, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11343658

RESUMEN

On a radial temperature gradient, C. elegans worms migrate, after conditioning with food, toward their cultivation temperature and move along this isotherm. This experience-dependent behavior is called isothermal tracking (IT). Here we show that the neuron-specific calcium sensor-1 (NCS-1) is essential for optimal IT. ncs-1 knockout animals show major defects in IT behavior, although their chemotactic, locomotor, and thermal avoidance behaviors are normal. The knockout phenotype can be rescued by reintroducing wild-type NCS-1 into the AIY interneuron, a key component of the thermotaxis network. A loss-of-function form of NCS-1 incapable of binding calcium does not restore IT, whereas NCS-1 overexpression enhances IT performance levels, accelerates learning (faster acquisition), and produces a memory with slower extinction. Thus, proper calcium signaling via NCS-1 defines a novel pathway essential for associative learning and memory.


Asunto(s)
Caenorhabditis elegans/metabolismo , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Conducta Animal/fisiología , Caenorhabditis elegans/citología , Proteínas de Unión al Calcio/genética , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica/fisiología , Mutación/fisiología , Sistema Nervioso/citología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Proteínas Sensoras del Calcio Neuronal , Neuronas/citología , Neuropéptidos/genética , Transmisión Sináptica/fisiología , Sensación Térmica/genética
8.
Cell ; 105(2): 221-32, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-11336672

RESUMEN

A stochastic cell fate decision mediated by axon contact and calcium signaling causes one of the two bilaterally symmetric AWC neurons, either AWCL or AWCR, to express the candidate olfactory receptor str-2. nsy-1 mutants express str-2 in both neurons, disrupting AWC asymmetry. nsy-1 encodes a homolog of the human MAP kinase kinase kinase (MAPKKK) ASK1, an activator of JNK and p38 kinases. Based on genetic epistasis analysis, nsy-1 appears to act downstream of the CaMKII unc-43, and NSY-1 associates with UNC-43, suggesting that UNC-43/CaMKII activates the NSY-1 MAP kinase cassette. Mosaic analysis demonstrates that UNC-43 and NSY-1 act primarily in a cell-autonomous execution step that represses str-2 expression in one AWC cell, downstream of the initial lateral signaling pathway that coordinates the fates of the two cells.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Epistasis Genética , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mosaicismo/genética , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/metabolismo , Transgenes/genética , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Línea Celular , Marcación de Gen , Genes Reporteros/genética , Humanos , Immunoblotting , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas/genética , Microscopía Confocal , Datos de Secuencia Molecular , Fosforilación , Receptores Odorantes/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
9.
Nature ; 410(6829): 698-701, 2001 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-11287957

RESUMEN

Caenorhabditis elegans senses at least five attractive odours with a single pair of olfactory neurons, AWC, but can distinguish among these odours in behavioural assays. The two AWC neurons are structurally and functionally similar, but the G-protein-coupled receptor STR-2 is randomly expressed in either the left or the right AWC neuron, never in both. Here we describe the isolation of a mutant, ky542, with specific defects in odour discrimination and odour chemotaxis. ky542 is an allele of nsy-1, a neuronal symmetry, or Nsy, mutant in which STR-2 is expressed in both AWC neurons. Other Nsy mutants exhibit discrimination and olfactory defects like those of nsy-1 mutants. Laser ablation of the AWC neuron that does not express STR-2 (AWCOFF) recapitulates the behavioural phenotype of Nsy mutants, whereas laser ablation of the STR-2-expressing AWC neuron (AWCON) causes different chemotaxis defects. We propose that odour discrimination can be achieved by segregating the detection of different odours into distinct olfactory neurons or into unique combinations of olfactory neurons.


Asunto(s)
Caenorhabditis elegans/fisiología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Animales , Benzaldehídos , Butanonas , Caenorhabditis elegans/genética , Quimiotaxis/genética , Quimiotaxis/fisiología , Mutación , Odorantes , Olfato/genética , Tiazoles
10.
Genome Biol ; 2(2): REVIEWS1005, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11182891

RESUMEN

Two recent chromosome-wide screens for phenotypes caused by RNA-mediated interference (RNAi) in Caenorhabditis elegans have increased our understanding of essential genes in nematodes. These papers represent a major advance in functional genomics.


Asunto(s)
Caenorhabditis elegans/genética , ARN Bicatenario/genética , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/embriología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes de Helminto/genética , Fenotipo , ARN Bicatenario/farmacología
11.
Neuron ; 29(1): 115-29, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11182085

RESUMEN

During synapse formation, presynaptic axon outgrowth is terminated, presynaptic clusters of vesicles are associated with active zone proteins, and active zones are aligned with postsynaptic neurotransmitter receptors. We report here the identification of a novel serine/threonine kinase, SAD-1, that regulates several aspects of presynaptic differentiation in C. elegans. In sad-1 mutant animals presynaptic vesicle clusters in sensory neurons and motor neurons are diffuse and disorganized. Sensory axons fail to terminate in sad-1 mutants, whereas overexpression of SAD-1 causes sensory axons to terminate prematurely. SAD-1 protein is expressed in the nervous system and localizes to synapse-rich regions of the axons. SAD-1 is related to PAR-1, a kinase that regulates cell polarity during asymmetric cell division. Overexpression of SAD-1 causes mislocalization of vesicle proteins to dendrites, suggesting that sad-1 affects axonal-dendritic polarity as well as synaptic development.


Asunto(s)
Axones/enzimología , Proteínas de Caenorhabditis elegans , Terminales Presinápticos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Vesículas Sinápticas/enzimología , Animales , Antígenos de Diferenciación/metabolismo , Axones/ultraestructura , Caenorhabditis elegans , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/ultraestructura , Dendritas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Neuronas Motoras/citología , Neuronas Motoras/enzimología , Mutagénesis Sitio-Dirigida , Unión Neuromuscular/metabolismo , Terminales Presinápticos/ultraestructura , Proteínas Serina-Treonina Quinasas/genética , Homología de Secuencia de Aminoácido , Vesículas Sinápticas/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
12.
Genetics ; 157(1): 211-24, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11139503

RESUMEN

Caenorhabditis elegans odr-2 mutants are defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Like many other olfactory mutants, they retain responses to high concentrations of AWC-sensed odors; we show here that these residual responses are caused by the ability of other olfactory neurons (the AWA neurons) to be recruited at high odor concentrations. odr-2 encodes a membrane-associated protein related to the Ly-6 superfamily of GPI-linked signaling proteins and is the founding member of a C. elegans gene family with at least seven other members. Alternative splicing of odr-2 yields three predicted proteins that differ only at the extreme amino terminus. The three isoforms have different promoters, and one isoform may have a unique role in olfaction. An epitope-tagged ODR-2 protein is expressed at high levels in sensory neurons, motor neurons, and interneurons and is enriched in axons. The AWC neurons are superficially normal in their development and structure in odr-2 mutants, but their function is impaired. Our results suggest that ODR-2 may regulate AWC signaling within the neuronal network required for chemotaxis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Genes de Helminto , Proteínas del Helminto/genética , Proteínas del Helminto/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Olfato/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Quimiotaxis/genética , Quimiotaxis/fisiología , Cartilla de ADN/genética , ADN de Helmintos/genética , Proteínas del Helminto/química , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Odorantes , Neuronas Receptoras Olfatorias/fisiología , Pentanonas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , ARN de Helminto/genética , ARN de Helminto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
13.
Mol Biol Cell ; 11(9): 3177-90, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10982409

RESUMEN

The Caenorhabditis elegans sax-1 gene regulates several aspects of neuronal cell shape. sax-1 mutants have expanded cell bodies and ectopic neurites in many classes of neurons, suggesting that SAX-1 functions to restrict cell and neurite growth. The ectopic neurites in sensory neurons of sax-1 mutants resemble the defects caused by decreased sensory activity. However, the activity-dependent pathway, mediated in part by the UNC-43 calcium/calmodulin-dependent kinase II, functions in parallel with SAX-1 to suppress neurite initiation. sax-1 encodes a serine/threonine kinase in the Ndr family that is related to the Orb6 (Schizosaccharomyces pombe), Warts/Lats (Drosophila), and COT-1 (Neurospora) kinases that function in cell shape regulation. These kinases have similarity to Rho kinases but lack consensus Rho-binding domains. Dominant negative mutations in the C. elegans RhoA GTPase cause neuronal cell shape defects similar to those of sax-1 mutants, and genetic interactions between rhoA and sax-1 suggest shared functions. These results suggest that SAX-1/Ndr kinases are endogenous inhibitors of neurite initiation and cell spreading.


Asunto(s)
Neuritas/fisiología , Neuronas/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans , Tamaño de la Célula , Drosophila/genética , Exones , Eliminación de Gen , Proteínas Fluorescentes Verdes , Intrones , Proteínas Luminiscentes/análisis , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Neurospora/genética , Filogenia , Proteínas Serina-Treonina Quinasas/química , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transfección
14.
Neuron ; 25(3): 575-86, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10774726

RESUMEN

Animals in complex environments must discriminate between salient and uninformative sensory cues. Caenorhabditis elegans uses one pair of olfactory neurons called AWC to sense many different odorants, yet the animal can distinguish each odorant from the others in discrimination assays. We demonstrate that the transmembrane guanylyl cyclase ODR-1 is essential for responses to all AWC-sensed odorants. ODR-1 appears to be a shared signaling component downstream of odorant receptors. Overexpression of ODR-1 protein indicates that ODR-1 can influence odor discrimination and adaptation as well as olfaction. Adaptation to one odorant, butanone, is disrupted by ODR-1 overexpression. Olfactory discrimination is also disrupted by ODR-1 overexpression, probably by overproduction of the shared second messenger cGMP. We propose that AWC odorant signaling pathways are insulated to permit odor discrimination.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Guanilato Ciclasa/metabolismo , Receptores Odorantes/fisiología , Olfato/fisiología , Adaptación Fisiológica/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Conducta Animal/fisiología , Benzaldehídos , Butanonas , Membrana Celular/química , Membrana Celular/enzimología , Células Quimiorreceptoras/fisiología , Aprendizaje Discriminativo/fisiología , Espacio Extracelular/química , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas de Unión al GTP Heterotriméricas/genética , Datos de Secuencia Molecular , Mutagénesis/fisiología , Odorantes , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/enzimología , Pentanoles , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
15.
J Cell Biol ; 147(3): 519-30, 1999 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-10545497

RESUMEN

The heterotrimeric motor protein, kinesin-II, and its presumptive cargo, can be observed moving anterogradely at 0.7 microm/s by intraflagellar transport (IFT) within sensory cilia of chemosensory neurons of living Caenorhabditis elegans, using a fluorescence microscope-based transport assay (Orozco, J.T., K.P. Wedaman, D. Signor, H. Brown, L. Rose, and J.M. Scholey. 1999. Nature. 398:674). Here, we report that kinesin-II, and two of its presumptive cargo molecules, OSM-1 and OSM-6, all move at approximately 1.1 microm/s in the retrograde direction along cilia and dendrites, which is consistent with the hypothesis that these proteins are retrieved from the distal endings of the cilia by a retrograde transport pathway that moves them along cilia and then dendrites, back to the neuronal cell body. To test the hypothesis that the minus end-directed microtubule motor protein, cytoplasmic dynein, drives this retrograde transport pathway, we visualized movement of kinesin-II and its cargo along dendrites and cilia in a che-3 cytoplasmic dynein mutant background, and observed an inhibition of retrograde transport in cilia but not in dendrites. In contrast, anterograde IFT proceeds normally in che-3 mutants. Thus, we propose that the class DHC1b cytoplasmic dynein, CHE-3, is specifically responsible for the retrograde transport of the anterograde motor, kinesin-II, and its cargo within sensory cilia, but not within dendrites.


Asunto(s)
Transporte Axonal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cilios/metabolismo , Dendritas/metabolismo , Dineínas/metabolismo , Proteínas Musculares/metabolismo , Neuronas Aferentes/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Dineínas/química , Dineínas/genética , Flagelos/metabolismo , Genes de Helminto/genética , Genes de Helminto/fisiología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Cinesinas , Cinética , Microscopía Fluorescente , Proteínas Motoras Moleculares/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Neuronas Aferentes/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fenotipo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
16.
Cell ; 99(4): 387-98, 1999 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-10571181

RESUMEN

C. elegans detects several odorants with the bilaterally symmetric pair of AWC olfactory neurons. A stochastic, coordinated decision ensures that the candidate odorant receptor gene str-2 is expressed in only one AWC neuron in each animal--either the left or the right neuron, but never both. An interaction between the two AWC neurons generates asymmetric str-2 expression in a process that requires normal axon guidance and probably AWC axon contact. This interaction induces str-2 expression by reducing calcium signaling through a voltage-dependent Ca2+ channel and the CaM kinase II UNC-43. CaMKII activity acts as a switch in the initial decision to express str-2; thus, calcium signals can define distinct cell types during neuronal development. A cGMP signaling pathway that is used in olfaction maintains str-2 expression after the initial decision has been made.


Asunto(s)
Axones/metabolismo , Caenorhabditis elegans/metabolismo , Señalización del Calcio , Calcio/metabolismo , Receptores Odorantes/biosíntesis , Animales , Animales Modificados Genéticamente , Axones/fisiología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Receptores Odorantes/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
17.
Genes Dev ; 13(14): 1794-806, 1999 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-10421632

RESUMEN

The Caenorhabditis elegans AWA, AWB, and AWC olfactory neurons are each required for the recognition of a specific subset of volatile odorants. lim-4 mutants express an AWC reporter gene inappropriately in the AWB olfactory neurons and fail to express an AWB reporter gene. The AWB cells are morphologically transformed toward an AWC fate in lim-4 mutants, adopting cilia and axon morphologies characteristic of AWC. AWB function is also transformed in these mutants: Rather than mediating the repulsive behavioral responses appropriate for AWB, the AWB neurons mediate attractive responses, like AWC. LIM-4 is a predicted LIM homeobox gene that is expressed in AWB and a few other head neurons. Ectopic expression of LIM-4 in the AWC neuron pair is sufficient to force those cells to adopt an AWB fate. The AWA nuclear hormone receptor ODR-7 described previously also represses AWC genes, as well as inducing AWA genes. We propose that the LIM-4 and ODR-7 transcription factors function to diversify C. elegans olfactory neuron identities, driving them from an AWC-like state into alternative fates.


Asunto(s)
Proteínas de Caenorhabditis elegans , Genes Homeobox , Proteínas de Homeodominio/genética , Neuronas Receptoras Olfatorias/citología , Proteínas Recombinantes de Fusión , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Linaje de la Célula , Conducta Alimentaria , Proteínas con Homeodominio LIM , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
18.
Development ; 126(16): 3679-92, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10409513

RESUMEN

Over half of the neurons in Caenorhabditis elegans send axons to the nerve ring, a large neuropil in the head of the animal. Genetic screens in animals that express the green fluorescent protein in a subset of sensory neurons identified eight new sax genes that affect the morphology of nerve ring axons. sax-3/robo mutations disrupt axon guidance in the nerve ring, while sax-5, sax-9 and unc-44 disrupt both axon guidance and axon extension. Axon extension and guidance proceed normally in sax-1, sax-2, sax-6, sax-7 and sax-8 mutants, but these animals exhibit later defects in the maintenance of nerve ring structure. The functions of existing guidance genes in nerve ring development were also examined, revealing that SAX-3/Robo acts in parallel to the VAB-1/Eph receptor and the UNC-6/netrin, UNC-40/DCC guidance systems for ventral guidance of axons in the amphid commissure, a major route of axon entry into the nerve ring. In addition, SAX-3/Robo and the VAB-1/Eph receptor both function to prevent aberrant axon crossing at the ventral midline. Together, these genes define pathways required for axon growth, guidance and maintenance during nervous system development.


Asunto(s)
Axones/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Neuronas/fisiología , Receptores Inmunológicos/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Quimiotaxis , Femenino , Genes Reporteros , Proteínas Fluorescentes Verdes , Interneuronas/fisiología , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Neuronas Motoras/fisiología , Mutagénesis , Proteínas del Tejido Nervioso , Neuronas/citología , Neuronas Aferentes/fisiología , Receptores Inmunológicos/genética , Proteínas Roundabout
20.
Development ; 126(9): 1891-902, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10101123

RESUMEN

The simple nervous system of the nematode C. elegans consists of 302 neurons with highly reproducible morphologies, suggesting a hard-wired program of axon guidance. Surprisingly, we show here that sensory activity shapes sensory axon morphology in C. elegans. A class of mutants with deformed sensory cilia at their dendrite endings have extra axon branches, suggesting that sensory deprivation disrupts axon outgrowth. Mutations that alter calcium channels or membrane potential cause similar defects. Cell-specific perturbations of sensory activity can cause cell-autonomous changes in axon morphology. Although the sensory axons initially reach their targets in the embryo, the mutations that alter sensory activity cause extra axon growth late in development. Thus, perturbations of activity affect the maintenance of sensory axon morphology after an initial pattern of innervation is established. This system provides a genetically tractable model for identifying molecular mechanisms linking neuronal activity to nervous system structure.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Quimiotaxis , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/embriología , Neuronas Aferentes/fisiología , Canales de Potasio con Entrada de Voltaje , Animales , Animales Modificados Genéticamente , Axones/ultraestructura , Dendritas/fisiología , Dendritas/ultraestructura , Proteínas Fluorescentes Verdes , Proteínas del Helminto/genética , Canales Iónicos/genética , Canal de Potasio Kv.1.1 , Canal de Potasio Kv.1.2 , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Morfogénesis , Neuronas Aferentes/ultraestructura , Canales de Potasio/genética , Proteínas Recombinantes de Fusión/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA