Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34099995

RESUMEN

Stressful conversation is a frequently occurring stressor in our daily life. Stressors not only adversely affect our physical and mental health but also our relationships with family, friends, and coworkers. In this paper, we present a model to automatically detect stressful conversations using wearable physiological and inertial sensors. We conducted a lab and a field study with cohabiting couples to collect ecologically valid sensor data with temporally-precise labels of stressors. We introduce the concept of stress cycles, i.e., the physiological arousal and recovery, within a stress event. We identify several novel features from stress cycles and show that they exhibit distinguishing patterns during stressful conversations when compared to physiological response due to other stressors. We observe that hand gestures also show a distinct pattern when stress occurs due to stressful conversations. We train and test our model using field data collected from 38 participants. Our model can determine whether a detected stress event is due to a stressful conversation with an F1-score of 0.83, using features obtained from only one stress cycle, facilitating intervention delivery within 3.9 minutes since the start of a stressful conversation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-30417165

RESUMEN

Monitoring of in-person conversations has largely been done using acoustic sensors. In this paper, we propose a new method to detect moment-by-moment conversation episodes by analyzing breathing patterns captured by a mobile respiration sensor. Since breathing is affected by physical and cognitive activities, we develop a comprehensive method for cleaning, screening, and analyzing noisy respiration data captured in the field environment at individual breath cycle level. Using training data collected from a speech dynamics lab study with 12 participants, we show that our algorithm can identify each respiration cycle with 96.34% accuracy even in presence of walking. We present a Conditional Random Field, Context-Free Grammar (CRF-CFG) based conversation model, called rConverse, to classify respiration cycles into speech or non-speech, and subsequently infer conversation episodes. Our model achieves 82.7% accuracy for speech/non-speech classification and it identifies conversation episodes with 95.9% accuracy on lab data using a leave-one-subject-out cross-validation. Finally, the system is validated against audio ground-truth in a field study with 32 participants. rConverse identifies conversation episodes with 71.7% accuracy on 254 hours of field data. For comparison, the accuracy from a high-quality audio-recorder on the same data is 71.9%.

3.
Proc ACM Int Conf Ubiquitous Comput ; 2016: 706-717, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28058408

RESUMEN

Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors.

4.
Drug Alcohol Depend ; 151: 159-66, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25920802

RESUMEN

BACKGROUND: Ambulatory physiological monitoring could clarify antecedents and consequences of drug use and could contribute to a sensor-triggered mobile intervention that automatically detects behaviorally risky situations. Our goal was to show that such monitoring is feasible and can produce meaningful data. METHODS: We assessed heart rate (HR) with AutoSense, a suite of biosensors that wirelessly transmits data to a smartphone, for up to 4 weeks in 40 polydrug users in opioid-agonist maintenance as they went about their daily lives. Participants also self-reported drug use, mood, and activities on electronic diaries. We compared HR with self-report using multilevel modeling (SAS Proc Mixed). RESULTS: Compliance with AutoSense was good; the data yield from the wireless electrocardiographs was 85.7%. HR was higher when participants reported cocaine use than when they reported heroin use (F(2,9)=250.3, p<.0001) and was also higher as a function of the dose of cocaine reported (F(1,8)=207.7, p<.0001). HR was higher when participants reported craving heroin (F(1,16)=230.9, p<.0001) or cocaine (F(1,14)=157.2, p<.0001) than when they reported of not craving. HR was lower (p<.05) in randomly prompted entries in which participants reported feeling relaxed, feeling happy, or watching TV, and was higher when they reported feeling stressed, being hassled, or walking. CONCLUSIONS: High-yield, high-quality heart-rate data can be obtained from drug users in their natural environment as they go about their daily lives, and the resultant data robustly reflect episodes of cocaine and heroin use and other mental and behavioral events of interest.


Asunto(s)
Afecto/fisiología , Monitoreo Ambulatorio de la Presión Arterial/instrumentación , Ansia/fisiología , Consumidores de Drogas/psicología , Frecuencia Cardíaca/fisiología , Adolescente , Adulto , Anciano , Cocaína/farmacología , Femenino , Heroína/farmacología , Humanos , Masculino , Persona de Mediana Edad
5.
ACM BCB ; 2014: 479-488, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25821861

RESUMEN

Stress can lead to headaches and fatigue, precipitate addictive behaviors (e.g., smoking, alcohol and drug use), and lead to cardiovascular diseases and cancer. Continuous assessment of stress from sensors can be used for timely delivery of a variety of interventions to reduce or avoid stress. We investigate the feasibility of continuous stress measurement via two field studies using wireless physiological sensors - a four-week study with illicit drug users (n = 40), and a one-week study with daily smokers and social drinkers (n = 30). We find that 11+ hours/day of usable data can be obtained in a 4-week study. Significant learning effect is observed after the first week and data yield is seen to be increasing over time even in the fourth week. We propose a framework to analyze sensor data yield and find that losses in wireless channel is negligible; the main hurdle in further improving data yield is the attachment constraint. We show the feasibility of measuring stress minutes preceding events of interest and observe the sensor-derived stress to be rising prior to self-reported stress and smoking events.

6.
Artículo en Inglés | MEDLINE | ID: mdl-25798455

RESUMEN

Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to time its delivery so that the user is available to be engaged. We take a first step in modeling users' availability by analyzing 2,064 hours of physiological sensor data and 2,717 self-reports collected from 30 participants in a week-long field study. We use delay in responding to a prompt to objectively measure availability. We compute 99 features and identify 30 as most discriminating to train a machine learning model for predicting availability. We find that location, affect, activity type, stress, time, and day of the week, play significant roles in predicting availability. We find that users are least available at work and during driving, and most available when walking outside. Our model finally achieves an accuracy of 74.7% in 10-fold cross-validation and 77.9% with leave-one-subject-out.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA