Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37195134

RESUMEN

The scanning superconducting quantum interference device (SQUID) fabricated on the tip of a sharp quartz pipette (SQUID-on-tip) has emerged as a versatile tool for the nanoscale imaging of magnetic, thermal, and transport properties of microscopic devices of quantum materials. We present the design and performance of a scanning SQUID-on-tip microscope in a top-loading probe of a cryogen-free dilution refrigerator. The microscope is enclosed in a custom-made vacuum-tight cell mounted at the bottom of the probe and is suspended by springs to suppress vibrations caused by the pulse tube cryocooler. Two capillaries allow for the in situ control of helium exchange gas pressure in the cell that is required for thermal imaging. A nanoscale heater is used to create local temperature gradients in the sample, which enables quantitative characterization of relative vibrations between the tip and the sample. The spectrum of the vibrations shows distinct resonant peaks with a maximal power density of about 27 nm/Hz1/2 in the in-plane direction. The performance of the SQUID-on-tip microscope is demonstrated by magnetic imaging of the MnBi2Te4 magnetic topological insulator, magnetization and current distribution imaging in a SrRuO3 ferromagnetic oxide thin film, and thermal imaging of dissipation in graphene.

2.
Polymers (Basel) ; 13(13)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279353

RESUMEN

Nanoscale textured surfaces play an important role in creating antibacterial surfaces, broadband anti-reflective properties, and super-hydrophobicity in many technological systems. Creating nanoscale oxide textures on polymer substrates for applications such as ophthalmic lenses and flexible electronics imposes additional challenges over conventional nanofabrication processes since polymer substrates are typically temperature-sensitive and chemically reactive. In this study, we investigated and developed nanofabrication methodologies to create highly ordered oxide nanostructures on top of polymer substrates without any lithography process. We developed suitable block copolymer self-assembly, sequential infiltration synthesis (SIS), and reactive ion etching (RIE) for processes on polymer substrates. Importantly, to prevent damage to the temperature-sensitive polymer and polymer/oxide interface, we developed the process to be entirely performed at low temperatures, that is, below 80 °C, using a combination of UV crosslinking, solvent annealing, and modified SIS and RIE processes. In addition, we developed a substrate passivation process to overcome reactivity between the polymer substrate and the SIS precursors as well as a high precision RIE process to enable deep etching into the thermally insulated substrate. These methodologies widen the possibilities of nanofabrication on polymers.

3.
J Colloid Interface Sci ; 557: 537-545, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550646

RESUMEN

Tin oxide (SnO2) nanostructures are attractive for sensing, catalysis, and optoelectronic applications. Here we investigate the fabrication of SnOx nanostructures through sequential infiltration synthesis (SIS) in block copolymer (BCP) film templates. While the growth of metal and metal oxides within polymers and BCP films via SIS has been demonstrated until now using small precursors such as trimethyl aluminum and diethyl zinc, we hypothesize that SIS can be performed using larger precursors and demonstrate SnOx SIS with tetrakis(dimethylamino)tin (TDMASn) and hydrogen peroxide. Tuning the SIS reaction and BCP chemistry resulted in highly ordered, polystyrene-block-poly(2-vinyl pyridine) (P2VP)-templated porous SnOx - AlOx and SnOx nanostructures. Detailed investigation using in-situ microbalance, high resolution electron microscopy, elemental analysis and infra-red spectroscopy shows that SnOx can directly grow within P2VP homopolymer and BCP films. Simultaneously with the growth, SnOx SIS process also contributes to the polymer etch. Performing SnOx SIS with pretreatment of a single AlOx SIS cycle increases the SnOx growth and protects the BCP template from etching. This is the first report of SnOx SIS opening a pathway for additional tetrakis-based organometallic precursors to be utilized in growth processes within polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...