Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20200, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980377

RESUMEN

The interaction of tyramine neurotransmitter with silver nano-particle (Ag6) cluster is explored in terms of the molecular structure, electronic properties and NBO analysis of tyramine-AgNPs bio-molecular conjugate. The adsorption mechanism of tyramine onto the Ag6 cluster has been investigated through computing of the electronic and geometrical properties in addition to the adsorption energies in various possible configurations. The magnitude of adsorption energy corresponding to the most favorable tyramine-Ag6 bio-molecular conjugate has been computed to be - 14.36 kcal/mol in the gas phase, which infers a good adsorption of tyramine with AgNPs cluster suggesting the practical applications of tyramine-AgNPs bio-molecular conjugates in bio-sensing, drug delivery, bio-imaging and other applications. Different electronic properties such as the energy gap of HOMO-LUMO, Fermi level and work function have been investigated in detail. Moreover, the effect of aqueous media on adsorption energy and electronic properties of the most favorable tyramine-AgNPs bio-molecular conjugate is investigated in order to understand the impact of the real biological situation.


Asunto(s)
Tiramina , Agua , Estructura Molecular , Adsorción , Plata/química
2.
Nanotechnology ; 34(44)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37527630

RESUMEN

In addition to their adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism.

3.
Environ Sci Pollut Res Int ; 30(42): 95039-95053, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37580476

RESUMEN

More than 60% of India's population relies on agriculture as their primary source of income, making it the nation's most important economic sector. Rice husk (often abbreviated as RH) is one of the most typical by-products of agricultural production. Every five tonnes of rice that is harvested results in the production of one tonne of husk. The concept of recycling and reusing waste from agricultural production has received interest from a variety of environmental and industrial perspectives. A wide variety of nanomaterials, including nano-zeolite, nanocarbon, and nano-silica, have been discovered in agro-waste. From rice cultivation to the finished product, there was a by-product consisting of husk that comprised 20% of the overall weight, or RH. The percentage of silica in RH ash ranges from 60 to 40%, with the remaining percentage consisting of various minerals. As a direct consequence of this, several distinct approaches to generating and extracting nanomaterial from rice husk have been developed. Because it contains a significant amount of cellulose and lignin, RH is an excellent and economical source of carbon precursor. The goal of this chapter is to produce carbon-based nanomaterials from RH.


Asunto(s)
Nanoestructuras , Oryza , Carbono
4.
Eur Phys J E Soft Matter ; 46(3): 21, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971876

RESUMEN

PA-KNNT-P(VDF-HFP) composite films were synthesized using facile solution casting technique. Due to their wide range of applications in dielectric and electrical systems, phosphonic acid (PA)-modified tantalum-doped potassium sodium niobate (KNNT)-polyvinylidene fluoride co-hexafluoropropylene P(VDF-HFP) composite films have piqued the interest of academic researchers. Microstructural analysis showed that PA layers incorporated onto the KNNT particles within the polymer matrix. The PA-KNNT-P(VDF-HFP) composite exhibited improved dielectric and electrical performance over a broad range of frequency, and the value of the dielectric constant of the P(VDF-HFP) composites is improved by ≈119 over the P(VDF-HFP) matrix at a filler loading 19 wt.%. Moreover, PA-KNNT-P(VDF-HFP) composite also reveals higher dielectric constant (≈ 119) and AC conductivity than P(VDF-HFP)-KNNT composites, while maintaining suppressed dielectric loss ([Formula: see text] at 102 Hz). It is also observed that the PA-KNNT-P(VDF-HFP) composite exhibited an insulator-conductor transition with a percolation threshold of fKNNT = 13.4 wt.%. As a result of their exceptional dielectric and electrical characteristics, PA-KNNT-P(VDF-HFP) composites have the potential to find exciting practical applications in a variety of electronic domains.

5.
ACS Omega ; 8(5): 4436-4452, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36777592

RESUMEN

For field-like environmental gas monitoring and noninvasive illness diagnostics, effective sensing materials with exceptional sensing capabilities of sensitive, quick detection of volatile organic compounds (VOCs) are required. Carbon-based nanomaterials (CNMs), like CNTs, graphene, carbon dots (Cdots), and others, have recently drawn a lot of interest for their future application as an elevated-performance sensor for the detection of VOCs. CNMs have a greater potential for developing selective sensors that target VOCs due to their tunable chemical and surface properties. Additionally, the mechanical versatility of CNMs enables the development of novel gas sensors and places them ahead of other sensing materials for wearable applications. An overview of the latest advancements in the study of CNM-based sensors is given in this comprehensive organized review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...