Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 620, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581797

RESUMEN

BACKGROUND: Protein, starch, amylose and total soluble sugars are basic metabolites of seed that influence the eating, cooking and nutritional qualities of rice. Chlorophyll is responsible for the absorption and utilization of the light energy influencing photosynthetic efficiency in rice plant. Mapping of these traits are very important for detection of more number of robust markers for improvement of these traits through molecular breeding approaches. RESULTS: A representative panel population was developed by including 120 germplasm lines from the initial shortlisted 274 lines for mapping of the six biochemical traits using 136 microsatellite markers through association mapping. A wide genetic variation was detected for the traits, total protein, starch, amylose, total soluble sugars, chlorophyll a, and chlorophyll b content in the population. Specific allele frequency, gene diversity, informative markers and other diversity parameters obtained from the population indicated the effectiveness of utilization of the population and markers for mapping of these traits. The fixation indices values estimated from the population indicated the existence of linkage disequilibrium for the six traits. The population genetic structure at K = 3 showed correspondence with majority of the members in each group for the six traits. The reported QTL, qProt1, qPC6.2, and qPC8.2 for protein content; qTSS8.1 for total soluble sugar; qAC1.2 for amylose content; qCH2 and qSLCHH for chlorophyll a (Chl. a) while qChl5D for chlorophyll b (Chl. b) were validated in this population. The QTL controlling total protein content qPC1.2; qTSS7.1, qTSS8.2 and qTSS12.1 for total soluble sugars; qSC2.1, qSC2.2, qSC6.1 and qSC11.1 for starch content; qAC11.1, qAC11.2 and qAC11.3 for amylose content; qChla8.1 for Chl. a content and qChlb7.1 and qChlb8.1 for Chl. b identified by both Generalized Linear Model and Mixed Linear Model were detected as novel QTL. The chromosomal regions on chromosome 8 at 234 cM for grain protein content and total soluble sugars and at 363 cM for Chl. a and Chl. b along with the position at 48 cM on chromosome 11 for starch and amylose content are genetic hot spots for these traits. CONCLUSION: The validated, co-localized and the novel QTL detected in this study will be useful for improvement of protein, starch, amylose, total soluble sugars and chlorophyll content in rice.


Asunto(s)
Oryza , Almidón , Almidón/química , Amilosa/metabolismo , Oryza/metabolismo , Clorofila A , Clorofila , Azúcares
2.
BMC Plant Biol ; 20(1): 57, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019504

RESUMEN

BACKGROUND: High yielding rice varieties are usually low in grain iron (Fe) and zinc (Zn) content. These two micronutrients are involved in many enzymatic activities, lack of which cause many disorders in human body. Bio-fortification is a cheaper and easier way to improve the content of these nutrients in rice grain. RESULTS: A population panel was prepared representing all the phenotypic classes for grain Fe-Zn content from 485 germplasm lines. The panel was studied for genetic diversity, population structure and association mapping of grain Fe-Zn content in the milled rice. The population showed linkage disequilibrium showing deviation of Hardy-Weinberg's expectation for Fe-Zn content in rice. Population structure at K = 3 categorized the panel population into distinct sub-populations corroborating with their grain Fe-Zn content. STRUCTURE analysis revealed a common primary ancestor for each sub-population. Novel quantitative trait loci (QTLs) namely qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn content were detected using association mapping. Four QTLs, namely qFe3.3, qFe7.3, qFe8.1 and qFe12.2 for grain Fe content were detected to be co-localized with qZn3.1, qZn7, qZn8.3 and qZn12.3 QTLs controlling grain Zn content, respectively. Additionally, some Fe-Zn controlling QTLs were co-localized with the yield component QTLs, qTBGW, OsSPL14 and qPN. The QTLs qFe1.1, qFe3.1, qFe5.1, qFe7.1, qFe8.1, qZn6, qZn7 and gRMm9-1 for grain Fe-Zn content reported in earlier studies were validated in this study. CONCLUSION: Novel QTLs, qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn content were detected for these two traits. Four Fe-Zn controlling QTLs and few yield component QTLs were detected to be co-localized. The QTLs, qFe1.1, qFe3.1, qFe5.1, qFe7.1, qFe8.1, qFe3.3, qFe7.3, qZn6, qZn7, qZn2.2, qZn8.3 and qZn12.3 will be useful for biofortification of the micronutrients. Simultaneous enhancement of Fe-Zn content may be possible with yield component traits in rice.


Asunto(s)
Grano Comestible/fisiología , Hierro/metabolismo , Desequilibrio de Ligamiento , Oryza/genética , Zinc/metabolismo , Grano Comestible/genética , Variación Genética , Nutrientes/metabolismo , Fitomejoramiento , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA