Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Appl Health Econ Health Policy ; 17(2): 189-211, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30367349

RESUMEN

BACKGROUND: The Medical Technologies Evaluation Programme (MTEP) of NICE in England aims to evaluate medical devices that are deemed to be cost-saving or cost-neutral and produce Medical Technology Guidance (MTG) to encourage their adoption. OBJECTIVE: To review the MTGs since MTEP's inception in 2009 until February 2017. METHODS: One researcher assessed all published MTGs and extracted data on the clinical and economic evidence supporting each technology. The NICE Committee's decision outcome for each assessment was also recorded. A qualitative analysis was performed on technologies that were not supported for adoption to identify the main drivers of the decision. RESULTS: Thirty-one MTGs were reviewed. The committee fully supported the medical devices in 14 MTGs, 11 were partially supported and six were not supported. Of the MTGs, 58% had no RCT data available and the main source of evidence came from non-experimental studies. There was no statistically significant difference in the average number of RCTs and non-experimental studies between the fully-supported, partially-supported, and not-supported technologies. Whilst all the fully-supported MTGs demonstrated cost-saving results, only 50% of the not-supported MTGs did. The sponsor estimated a higher average cost-saving than the EAC in most of the cases (20/31). The qualitative evaluation suggests that the main drivers for negative decisions were the quantity or quality of studies, and costs incurred in the economic evaluation results. CONCLUSIONS: The main drivers of the decision-making process are the quality and quantity of the submitted evidence supporting the technologies, as well as the economic evaluation results.


Asunto(s)
Tecnología Biomédica , Evaluación de la Tecnología Biomédica , Tecnología Biomédica/economía , Tecnología Biomédica/normas , Análisis Costo-Beneficio , Medicina Basada en la Evidencia , Humanos , Evaluación de la Tecnología Biomédica/métodos , Evaluación de la Tecnología Biomédica/organización & administración , Evaluación de la Tecnología Biomédica/estadística & datos numéricos , Reino Unido
2.
Mol Cell ; 59(2): 309-20, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26166706

RESUMEN

Sirtuins are an ancient family of NAD(+)-dependent deacylases connected with the regulation of fundamental cellular processes including metabolic homeostasis and genome integrity. We show the existence of a hitherto unrecognized class of sirtuins, found predominantly in microbial pathogens. In contrast to earlier described classes, these sirtuins exhibit robust protein ADP-ribosylation activity. In our model organisms, Staphylococcus aureus and Streptococcus pyogenes, the activity is dependent on prior lipoylation of the target protein and can be reversed by a sirtuin-associated macrodomain protein. Together, our data describe a sirtuin-dependent reversible protein ADP-ribosylation system and establish a crosstalk between lipoylation and mono-ADP-ribosylation. We propose that these posttranslational modifications modulate microbial virulence by regulating the response to host-derived reactive oxygen species.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/clasificación , Sirtuinas/clasificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Genes Bacterianos , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Lactobacillales/enzimología , Lactobacillales/genética , Lipoilación , Modelos Moleculares , Operón , Estrés Oxidativo , Filogenia , Conformación Proteica , Sirtuinas/química , Sirtuinas/genética , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad
3.
Mol Cell ; 58(6): 935-46, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091342

RESUMEN

The poly(ADP-ribose) polymerases (PARPs) are a major family of enzymes capable of modifying proteins by ADP-ribosylation. Due to the large size and diversity of this family, PARPs affect almost every aspect of cellular life and have fundamental roles in DNA repair, transcription, heat shock and cytoplasmic stress responses, cell division, protein degradation, and much more. In the past decade, our understanding of the PARP enzymatic mechanism and activation, as well as regulation of ADP-ribosylation signals by the readers and erasers of protein ADP-ribosylation, has been significantly advanced by the emergence of new structural data, reviewed herein, which allow for better understanding of the biological roles of this widespread post-translational modification.


Asunto(s)
Dominio Catalítico , Glicósido Hidrolasas/química , Poli Adenosina Difosfato Ribosa/química , Poli(ADP-Ribosa) Polimerasas/química , Estructura Terciaria de Proteína , Tioléster Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Tioléster Hidrolasas/metabolismo
4.
J Am Chem Soc ; 137(10): 3558-64, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25706250

RESUMEN

Poly(ADP-ribosyl)ation is a common post-translational modification that mediates a wide variety of cellular processes including DNA damage repair, chromatin regulation, transcription, and apoptosis. The difficulty associated with accessing poly(ADP-ribose) (PAR) in a homogeneous form has been an impediment to understanding the interactions of PAR with poly(ADP-ribose) glycohydrolase (PARG) and other binding proteins. Here we describe the chemical synthesis of the ADP-ribose dimer, and we use this compound to obtain the first human PARG substrate-enzyme cocrystal structure. Chemical synthesis of PAR is an attractive alternative to traditional enzymatic synthesis and fractionation, allowing access to products such as dimeric ADP-ribose, which has been detected but never isolated from natural sources. Additionally, we describe the synthesis of an alkynylated dimer and demonstrate that this compound can be used to synthesize PAR probes including biotin and fluorophore-labeled compounds. The fluorescently labeled ADP-ribose dimer was then utilized in a general fluorescence polarization-based PAR-protein binding assay. Finally, we use intermediates of our synthesis to access various PAR fragments, and evaluation of these compounds as substrates for PARG reveals the minimal features for substrate recognition and enzymatic cleavage. Homogeneous PAR oligomers and unnatural variants produced from chemical synthesis will allow for further detailed structural and biochemical studies on the interaction of PAR with its many protein binding partners.


Asunto(s)
Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/síntesis química , Dimerización , Glicósido Hidrolasas/metabolismo , Cristalografía por Rayos X , Glicósido Hidrolasas/química , Glicosilación , Humanos , Modelos Moleculares , Conformación Proteica
5.
Chromosoma ; 123(1-2): 79-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24162931

RESUMEN

Poly(ADP-ribose) (PAR) is a post-translational modification of proteins and is synthesised by PAR polymerases (PARPs), which have long been associated with the coordination of the cellular response to DNA damage, amongst other processes. Binding of some PARPs such as PARP1 to broken DNA induces a substantial wave of PARylation, which results in significant re-structuring of the chromatin microenvironment through modification of chromatin-associated proteins and recruitment of chromatin-modifying proteins. Similarly, other DNA damage response proteins are recruited to the damaged sites via PAR-specific binding modules, and in this way, PAR mediates not only local chromatin architecture but also DNA repair. Here, we discuss the expanding role of PAR in the DNA damage response, with particular focus on chromatin regulation.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Daño del ADN , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Apoptosis/genética , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo
6.
Nat Commun ; 4: 2164, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23917065

RESUMEN

Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Tetrahymena thermophila/enzimología , Biocatálisis , Secuencia Conservada , Cristalografía por Rayos X , Ácido Glutámico/metabolismo , Glicósido Hidrolasas/química , Humanos , Hidrólisis , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Poli Adenosina Difosfato Ribosa/química , Especificidad por Sustrato
7.
FEBS J ; 280(15): 3491-507, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23711178

RESUMEN

Poly(ADP-ribosyl)ation is involved in the regulation of a variety of cellular pathways, including, but not limited to, transcription, chromatin, DNA damage and other stress signalling. Similar to other tightly regulated post-translational modifications, poly(ADP-ribosyl)ation employs 'writers', 'readers' and 'erasers' to confer regulatory functions. The generation of poly(ADP-ribose) is catalyzed by poly(ADP-ribose) polymerase enzymes, which use NAD(+) as a cofactor to sequentially transfer ADP-ribose units generating long polymers, which, in turn, can affect protein function or serve as a recruitment platform for additional factors. Historically, research has focused on poly(ADP-ribose) generation pathways, with knowledge about PAR recognition and degradation lagging behind. Over recent years, several discoveries have significantly furthered our understanding of poly(ADP-ribose) recognition and, even more so, of poly(ADP-ribose) degradation. In this review, we summarize current knowledge about the protein modules recognizing poly(ADP-ribose) and discuss the newest developments on the complete reversibility of poly(ADP-ribosyl)ation.


Asunto(s)
Poli Adenosina Difosfato Ribosa/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Daño del ADN/fisiología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Poli Adenosina Difosfato Ribosa/química , Dominios y Motivos de Interacción de Proteínas , Proteínas/química
8.
Nat Commun ; 3: 878, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22673905

RESUMEN

Poly(ADP-ribosyl)ation is a reversible post-translational protein modification involved in the regulation of a number of cellular processes including DNA repair, chromatin structure, mitosis, transcription, checkpoint activation, apoptosis and asexual development. The reversion of poly(ADP-ribosyl)ation is catalysed by poly(ADP-ribose) (PAR) glycohydrolase (PARG), which specifically targets the unique PAR (1''-2') ribose-ribose bonds. Here we report the structure and mechanism of the first canonical PARG from the protozoan Tetrahymena thermophila. In addition, we reveal the structure of T. thermophila PARG in a complex with a novel rhodanine-containing mammalian PARG inhibitor RBPI-3. Our data demonstrate that the protozoan PARG represents a good model for human PARG and is therefore likely to prove useful in guiding structure-based discovery of new classes of PARG inhibitors.


Asunto(s)
Glicósido Hidrolasas/química , Glicósido Hidrolasas/clasificación , Glicósido Hidrolasas/metabolismo , Humanos , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tetrahymena thermophila/enzimología
9.
Biomolecules ; 3(1): 1-17, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24970154

RESUMEN

Poly(ADP-ribosyl)ation is a post-translational protein modification involved in the regulation of important cellular functions including DNA repair, transcription, mitosis and apoptosis. The amount of poly(ADP-ribosyl)ation (PAR) in cells reflects the balance of synthesis, mediated by the PARP protein family, and degradation, which is catalyzed by a glycohydrolase, PARG. Many of the proteins mediating PAR metabolism possess specialised high affinity PAR-binding modules that allow the efficient sensing or processing of the PAR signal. The identification of four such PAR-binding modules and the characterization of a number of proteins utilising these elements during the last decade has provided important insights into how PAR regulates different cellular activities. The macrodomain represents a unique PAR-binding module which is, in some instances, known to possess enzymatic activity on ADP-ribose derivatives (in addition to PAR-binding). The most recently discovered example for this is the PARG protein, and several available PARG structures have provided an understanding into how the PARG macrodomain evolved into a major enzyme that maintains PAR homeostasis in living cells.

10.
FEBS Lett ; 585(24): 3941-6, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22062154

RESUMEN

The anticancer and immunosuppressant thiopurines cause 6-thioguanine (6-TG) to accumulate in nuclear DNA. We report that 6-TG is also readily incorporated into mitochondrial DNA (mtDNA) where it is rapidly oxidized. The oxidized forms of mtDNA 6-TG inhibit replication by DNA Pol-γ. Accumulation of oxidized 6-TG is associated with reduced mtDNA transcription, a decline in mitochondrial protein levels, and loss of mitochondrial function. Ultraviolet A radiation (UVA) also oxidizes mtDNA 6-TG. Cells without mtDNA are less sensitive to killing by a combination of 6-TG and UVA than their mtDNA-containing counterparts, indicating that photochemical mtDNA 6-TG oxidation contributes to 6-TG-mediated UVA photosensitization.


Asunto(s)
Daño del ADN , ADN Mitocondrial/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Tioguanina/efectos adversos , Adenosina Trifosfato/biosíntesis , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Células HCT116 , Humanos , Cinética , Ratones , Mitocondrias/genética , Mitocondrias/efectos de la radiación , Oxidación-Reducción , Tioguanina/metabolismo , Factores de Tiempo , Rayos Ultravioleta
11.
Nature ; 477(7366): 616-20, 2011 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-21892188

RESUMEN

Post-translational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis. Poly(ADP-ribose) (PAR) is composed of repeating ADP-ribose units linked via a unique glycosidic ribose-ribose bond, and is synthesized from NAD by PAR polymerases. PAR glycohydrolase (PARG) is the only protein capable of specific hydrolysis of the ribose-ribose bonds present in PAR chains; its deficiency leads to cell death. Here we show that filamentous fungi and a number of bacteria possess a divergent form of PARG that has all the main characteristics of the human PARG enzyme. We present the first PARG crystal structure (derived from the bacterium Thermomonospora curvata), which reveals that the PARG catalytic domain is a distant member of the ubiquitous ADP-ribose-binding macrodomain family. High-resolution structures of T. curvata PARG in complexes with ADP-ribose and the PARG inhibitor ADP-HPD, complemented by biochemical studies, allow us to propose a model for PAR binding and catalysis by PARG. The insights into the PARG structure and catalytic mechanism should greatly improve our understanding of how PARG activity controls reversible protein poly(ADP-ribosyl)ation and potentially of how the defects in this regulation are linked to human disease.


Asunto(s)
Actinomycetales/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/genética , Humanos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/química , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Conformación Proteica , Proteínas/metabolismo , Pirrolidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...