Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 6002, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29650975

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

2.
Sci Rep ; 8(1): 3007, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445221

RESUMEN

Axonal degeneration occurs in the developing nervous system for the appropriate establishment of mature circuits, and is also a hallmark of diverse neurodegenerative diseases. Despite recent interest in the field, little is known about the changes (and possible role) of the cytoskeleton during axonal degeneration. We studied the actin cytoskeleton in an in vitro model of developmental pruning induced by trophic factor withdrawal (TFW). We found that F-actin decrease and growth cone collapse (GCC) occur early after TFW; however, treatments that prevent axonal fragmentation failed to prevent GCC, suggesting independent pathways. Using super-resolution (STED) microscopy we found that the axonal actin/spectrin membrane-associated periodic skeleton (MPS) abundance and organization drop shortly after deprivation, remaining low until fragmentation. Fragmented axons lack MPS (while maintaining microtubules) and acute pharmacological treatments that stabilize actin filaments prevent MPS loss and protect from axonal fragmentation, suggesting that MPS destruction is required for axon fragmentation to proceed.


Asunto(s)
Actinas/metabolismo , Axones/patología , Membrana Celular/metabolismo , Conos de Crecimiento/patología , Plasticidad Neuronal , Degeneración Retrógrada , Espectrina/metabolismo , Citoesqueleto de Actina , Animales , Axones/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Ratas , Ratas Wistar
3.
Genesis ; 54(12): 605-612, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27775873

RESUMEN

The Neurotrophin receptor associated death domain gene (Nradd/Nrh2/Plaidd) is a type I transmembrane protein with a unique and short N-terminal extracellular domain and a transmembrane and intracellular domain that bears high similarity to the p75 neurotrophin receptor (p75NTR/Ngfr). Initial studies suggested that NRADD regulates neurotrophin signaling but very little is known about its physiological roles. We have generated and characterized NRADD conditional and germ-line null mouse lines. These mice are viable and fertile and dont show evident abnormalities. However, NRADD deletion results in an increase in the proportion of dorsal root ganglion neurons expressing p75NTR. The NRADD conditional and complete knockout mouse lines generated are new and useful tools to study the physiological roles of NRADD. Birth Defects Research (Part A) 106:605-612, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Glicoproteínas de Membrana/genética , Factores de Crecimiento Nervioso/genética , Receptores de Muerte Celular/genética , Receptores de Factor de Crecimiento Nervioso/genética , Animales , Apoptosis/genética , Línea Celular , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
4.
Mol Cell Neurosci ; 75: 81-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27449758

RESUMEN

Recent findings indicate that the mechanisms that drive reshaping of the nervous system are aberrantly activated in epilepsy and several neurodegenerative diseases. The recurrent seizures in epilepsy, particularly in the condition called status epilepticus, can cause permanent neurological damage, resulting in cognitive dysfunction and other serious neurological conditions. In this study, we used an in vitro model of status epilepticus to examine the role of calpain in the degeneration of hippocampal neurons. We grew neurons on a culture system that allowed studying the dendritic and axonal domains separately from the cell bodies. We found that a recently characterized calpain substrate, the neurotrophin receptor TrkB, is cleaved in the dendritic and axonal domain of neurons committed to die, and this constitutes an early step in the neuronal degeneration process. While the full-length TrkB (TrkB-FL) levels decreased, the truncated form of TrkB (Tc TrkB-FL) concurrently increased, leading to a TrkB-FL/Tc TrkB-FL imbalance, which is thought to be causally linked to neurodegeneration. We further show that the treatment with N-acetyl-Leu-Leu-norleucinal, a specific calpain activity blocker, fully protects the neuronal processes from degeneration, prevents the TrkB-FL/Tc TrkB-FL imbalance, and provides full neuroprotection. Moreover, the use of the TrkB antagonist ANA 12 at the time when the levels of TrkB-FL were significantly decreased, totally blocked neuronal death, suggesting that Tc TrkB-FL may have a role in neuronal death. These results indicate that the imbalance of these neurotrophins receptors plays a key role in neurite degeneration induced by seizures.


Asunto(s)
Calpaína/metabolismo , Neuronas/metabolismo , Receptor trkB/metabolismo , Animales , Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Muerte Celular , Células Cultivadas , Hipocampo/citología , Leupeptinas/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteolisis , Ratas , Ratas Wistar , Receptor trkB/antagonistas & inhibidores , Estado Epiléptico/metabolismo
5.
Neuron ; 88(3): 461-74, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26539888

RESUMEN

Initially characterized for their roles in apoptosis, executioner caspases have emerged as important regulators of an array of cellular activities. This is especially true in the nervous system, where sublethal caspase activity has been implicated in axonal pathfinding and branching, axonal degeneration, dendrite pruning, regeneration, long-term depression, and metaplasticity. Here we examine the roles of sublethal executioner caspase activity in nervous system development and maintenance, consider the mechanisms that locally activate and restrain these potential killers, and discuss how their activity be subverted in neurodegenerative disease.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Enfermedades Neurodegenerativas/enzimología , Neuronas/enzimología , Animales , Humanos , Enfermedades Neurodegenerativas/patología , Plasticidad Neuronal/fisiología
6.
J Neurochem ; 131(2): 190-205, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24923428

RESUMEN

Extracellular S100B dramatically increases after brain injury. While low S100B levels are neuroprotective, micromolar S100B levels have shown in vitro to activate microglia and facilitate neuronal death. In astrocytes, S100B exposure activates nuclear factor kappa B (NF-κB) and induces pro-inflammatory mediators. On microglia and neurons S100B effects are essentially mediated by receptor for advanced glycation end products (RAGE)/NF-κB, but it is not clear if these intracellular cascades are activated by different S100B levels in astrocytes and whether increased extracellular S100B is sufficient to induce reactive gliosis. A better understanding of these pathways is essential for developing successful strategies to preserve the beneficial S100B effects after brain injury. Here, we show that microglia-depleted cultured astrocytes exposed to S100B mimicked several features of reactive gliosis by activating RAGE/Rac-1-Cdc42, RAGE/Erk-Akt or RAGE/NF-κB-dependent pathways. S100B effects include RAGE/Rac1-Cdc42-dependent astroglial hypertrophy and facilitation of migration as well as increased mitosis. S100B exposure improved the astrocytic survival to oxidative stress, an effect that requires Erk/Akt. S100B also activates NF-κB in a dose-dependent manner; increases RAGE proximal promoter transcriptional activity and augmented endogenous RAGE expression. S100B-exposed astrocytes showed a pro-inflammatory phenotype with expression of Toll-like receptor 2 (TLR 2), inducible nitric oxide synthase (iNOS) and interleukin 1-beta (IL-1ß), and facilitated neuronal death induced by oxygen-glucose deprivation. In vivo, intracerebral infusion of S100B was enough to induce an astroglial reactive phenotype. Together, these findings demonstrate that extracellular S100B in the micromolar level activates different RAGE-dependent pathways that turn astrocytes into a pro-inflammatory and neurodegenerative phenotype. We propose that S100B turns astrocytes into a reactive phenotype in a RAGE-dependent manner but engaging different intracellular pathways. While both nanomolar and micromolar S100B turn astrocytes into a reactive phenotype, micromolar S100B induces a conversion into a pro-inflammatory-neurodegenerative profile that facilitates neuronal death of OGD-exposed neurons. We think that S100B/RAGE interaction is essential to expand reactive gliosis in the injured brain being a tempting target for limiting reactive gliosis to prevent the glial conversion into the neurodegenerative profile.


Asunto(s)
Astrocitos/metabolismo , Comunicación Autocrina/fisiología , Gliosis/metabolismo , Receptores Inmunológicos/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/administración & dosificación , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Comunicación Autocrina/efectos de los fármacos , Bovinos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Infusiones Intraventriculares , Masculino , Ratas , Ratas Wistar , Receptor para Productos Finales de Glicación Avanzada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA