Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 1017040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530434

RESUMEN

Chronic Chagasic cardiomyopathy (CCC), a progressive inflammatory and fibrosing disease, is the most prominent clinical form of Chagas disease, a neglected tropical disease caused by Trypanosoma cruzi infection. During CCC, the parasite remains inside the cardiac cells, leading to tissue damage, involving extensive inflammatory response and irregular fibrosis. Among the fibrogenic factors is transforming growth factor-ß (TGF-ß), a key cytokine controlling extracellular matrix synthesis and degradation. TGF-ß is involved in CCC onset and progression, with increased serum levels and activation of its signaling pathways in the cardiac tissue, which crucially contributes to fibrosis. Inhibition of the TGF-ß signaling pathway attenuates T. cruzi infection and prevents cardiac damage in an experimental model of acute Chagas disease. The aim of this study was to investigate the effect of TGF-ß neutralization on T. cruzi infection in both in vitro and in vivo pre-clinical models, using the 1D11 monoclonal antibody. To this end, primary cultures of cardiac cells were infected with T. cruzi trypomastigote forms and treated with 1D11. For in vivo studies, 1D11 was administered in different schemes for acute and chronic phase models (Swiss mice infected with 104 parasites from the Y strain and C57BL/6 mice infected with 102 parasites from the Colombian strain, respectively). Here we show that the addition of 1D11 to cardiac cells greatly reduces cardiomyocyte invasion by T. cruzi and the number of parasites per infected cell. In both acute and chronic experimental models, T. cruzi infection altered the electrical conduction, decreasing the heart rate, increasing the PR interval and the P wave duration. The treatment with 1D11 reduced cardiac fibrosis and reversed electrical abnormalities improving cardiac performance. Taken together, these data further support the major role of the TGF-ß signaling pathways in T. cruzi-infection and their biological consequences on parasite/host interactions. The therapeutic effects of the 1D11 antibody are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-ß neutralization.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Trypanosoma cruzi , Ratones , Animales , Factor de Crecimiento Transformador beta/metabolismo , Cardiomiopatía Chagásica/tratamiento farmacológico , Trypanosoma cruzi/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Fibrosis
2.
PLoS One ; 17(8): e0271360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35921286

RESUMEN

Globoid cell leukodystrophy (Krabbe disease) is a fatal neurodegenerative, demyelinating disease caused by dysfunctional activity of galactosylceramidase (GALC), leading to the accumulation of glycosphingolipids including psychosine. While oligodendrocytes have been extensively studied due to their high levels of GALC, the contribution of astrocytes to disease pathogenesis remains to be fully elucidated. In the current study, we generated induced pluripotent stem cells (iPSCs) from two donors with infantile onset Krabbe disease and differentiated them into cultures of astrocytes. Krabbe astrocytes recapitulated many key findings observed in humans and rodent models of the disease, including the accumulation of psychosine and elevated expression of the pro-inflammatory cytokine IL-6. Unexpectedly, Krabbe astrocytes had higher levels of glucosylceramide and ceramide, and displayed compensatory changes in genes encoding glycosphingolipid biosynthetic enzymes, suggesting a shunting away from the galactosylceramide and psychosine pathway. In co-culture, Krabbe astrocytes negatively impacted the survival of iPSC-derived human neurons while enhancing survival of iPSC-derived human microglia. Substrate reduction approaches targeting either glucosylceramide synthase or serine palmitoyltransferase to reduce the sphingolipids elevated in Krabbe astrocytes failed to rescue their detrimental impact on neuron survival. Our results suggest that astrocytes may contribute to the progression of Krabbe disease and warrant further exploration into their role as therapeutic targets.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucodistrofia de Células Globoides , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fenotipo , Psicosina/metabolismo
3.
Biomed Pharmacother ; 149: 112808, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35290889

RESUMEN

Krabbe disease is a rare, inherited neurodegenerative disease due to impaired lysosomal ß-galactosylceramidase (GALC) activity and formation of neurotoxic ß-galactosylsphingosine ('psychosine'). We investigated substrate reduction therapy with a novel brain-penetrant inhibitor of galactosylceramide biosynthesis, RA 5557, in twitcher mice that lack GALC activity and model Krabbe disease. This thienopyridine derivative selectively inhibits uridine diphosphate-galactose glycosyltransferase 8 (UGT8), the final step in the generation of galactosylceramides which are precursors of sulphatide and, in the pathological lysosome, the immediate source of psychosine. Administration of RA 5557, reduced pathologically elevated psychosine concentrations (72-86%) in the midbrain and cerebral cortex in twitcher mice: the inhibitor decreased galactosylceramides by about 70% in midbrain and cerebral cortex in mutant and wild type animals. Exposure to the inhibitor significantly decreased several characteristic inflammatory response markers without causing apparent toxicity to myelin-producing cells in wild type and mutant mice; transcript abundance of oligodendrocyte markers MBP (myelin basic protein) and murine UGT8 was unchanged. Administration of the inhibitor before conception and during several breeding cycles to mice did not impair fertility and gave rise to healthy offspring. Nevertheless, given the unchanged lifespan, it appears that GALC has critical functions in the nervous system beyond the hydrolysis of galactosylceramide and galactosylsphingosine. Our findings support further therapeutic exploration of orally active UGT8 inhibitors in Krabbe disease and related galactosphingolipid disorders. The potent thienopyridine derivative with effective target engagement here studied appears to have an acceptable safety profile in vivo; judicious dose optimization will be needed to ensure efficacious clinical translation.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades Neurodegenerativas , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Galactosilceramidas/metabolismo , Galactosilceramidas/farmacología , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patología , Ratones , Enfermedades Neurodegenerativas/patología , Psicosina/metabolismo , Tienopiridinas
4.
ACS Med Chem Lett ; 11(10): 2010-2016, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33062186

RESUMEN

Metachromatic leukodystrophy (MLD) is a rare, genetic lysosomal storage disorder caused by the deficiency of arylsulfatase A enzyme, which results in the accumulation of sulfatide in the lysosomes of the tissues of central and peripheral nervous systems, leading to progressive demyelination and neurodegeneration. Currently there is no cure for this disease, and the only approved therapy, hematopoietic stem cell transplant, has limitations. We proposed substrate reduction therapy (SRT) as a novel approach to treat this disease, by inhibiting ceramide galactosyltransferase enzyme (UGT8). This resulted in the identification of a thienopyridine scaffold as a starting point to initiate medicinal chemistry. Further optimization of hit compound 1 resulted in the identification of brain penetrable, orally bioavailable compound 19, which showed efficacy in the in vivo pharmacodynamic models, indicating the potential to treat MLD with UGT8 inhibitors.

5.
Int J Parasitol Drugs Drug Resist ; 4(1): 28-36, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24596666

RESUMEN

S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, Trypanosoma brucei. Here, these derivatives were assayed for inhibition of AdoMetDC from P. falciparum parasites and the methylated derivative, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl]methylamino}-5'-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic P. falciparum parasites.

6.
PLoS Negl Trop Dis ; 8(1): e2628, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416464

RESUMEN

Cofactor-independent phosphoglycerate mutase (iPGAM) is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF). iPGAM's active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM's druggability, high-throughput screening (HTS) was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM's catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z'-factor >0.50) and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM) and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a "druggability paradox" of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data.


Asunto(s)
Brugia Malayi/enzimología , Inhibidores Enzimáticos/aislamiento & purificación , Filaricidas/aislamiento & purificación , Fosfoglicerato Mutasa/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/farmacología , Filaricidas/farmacología , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora
7.
ACS Med Chem Lett ; 3(2): 112-117, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22328964

RESUMEN

Here, we describe the discovery of a novel antimalarial agent using phenotypic screening of Plasmodium falciparum asexual blood-stage parasites. Screening a novel compound collection created using diversity-oriented synthesis (DOS) led to the initial hit. Structure-activity relationships guided the synthesis of compounds having improved potency and water solubility, yielding a subnanomolar inhibitor of parasite asexual blood-stage growth. Optimized compound 27 has an excellent off-target activity profile in erythrocyte lysis and HepG2 assays and is stable in human plasma. This compound is available via the molecular libraries probe production centers network (MLPCN) and is designated ML238.

8.
Chem Biol ; 18(12): 1602-10, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22195562

RESUMEN

Here we report the discovery of tetracyclic benzothiazepines (BTZs) as highly potent and selective antimalarials along with the identification of the Plasmodium falciparum cytochrome bc(1) complex as the primary functional target of this novel compound class. Investigation of the structure activity relationship within this previously unexplored chemical scaffold has yielded inhibitors with low nanomolar activity. A combined approach employing genetically modified parasites, biochemical profiling, and resistance selection validated inhibition of cytochrome bc(1) activity, an essential component of the parasite respiratory chain and target of the widely used antimalarial drug atovaquone, as the mode of action of this novel compound class. Resistance to atovaquone is eroding the efficacy of this widely used antimalarial drug. Intriguingly, BTZ-based inhibitors retain activity against atovaquone resistant parasites, suggesting this chemical class may provide an alternative to atovaquone in combination therapy.


Asunto(s)
Antimaláricos/química , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Tiazepinas/química , Animales , Antimaláricos/síntesis química , Antimaláricos/farmacología , Atovacuona/química , Atovacuona/farmacología , Sitios de Unión , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Tiazepinas/síntesis química , Tiazepinas/farmacología
9.
Antimicrob Agents Chemother ; 55(6): 2612-22, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21422215

RESUMEN

This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC50s], 200 to 285 nM) and inhibits P. berghei in vivo with an efficacy of > 99% in an adapted version of Peters' 4-day suppressive test (W. Peters, Ann. Trop. Med. Parasitol. 69:155-171, 1975). Genz-644442 became the focus of medicinal chemistry optimization; 321 analogs were synthesized and were tested for in vitro potency against P. falciparum and for in vitro absorption, distribution, metabolism, and excretion (ADME) properties. This yielded compounds with IC50s of approximately 30 nM. The lead compound, Genz-668764, has been characterized in more detail. It is a single enantiomer with IC50s of 28 to 65 nM against P. falciparum in vitro. In the 4-day P. berghei model, when it was dosed at 100 mg/kg of body weight/day, no parasites were detected on day 4 postinfection. However, parasites recrudesced by day 9. Dosing at 200 mg/kg/day twice a day resulted in cures of 3/5 animals. The compound had comparable activity against P. falciparum blood stages in a human-engrafted NOD-scid mouse model. Genz-668764 had a terminal half-life of 2.8 h and plasma trough levels of 41 ng/ml when it was dosed twice a day orally at 55 mg/kg/day. Seven-day rat safety studies showed a no-observable-adverse-effect level (NOAEL) at 200 mg/kg/day; the compound was not mutagenic in Ames tests, did not inhibit the hERG channel, and did not have potent activity against a broad panel of receptors and enzymes. Employing allometric scaling and using in vitro ADME data, the predicted human minimum efficacious dose of Genz-668764 in a 3-day once-daily dosing regimen was 421 mg/day/70 kg, which would maintain plasma trough levels above the IC90 against P. falciparum for at least 96 h after the last dose. The predicted human therapeutic index was approximately 3, on the basis of the exposure in rats at the NOAEL. We were unable to select for parasites with >2-fold decreased sensitivity to the parent compound, Genz-644442, over 270 days of in vitro culture under drug pressure. These characteristics make Genz-668764 a good candidate for preclinical development.


Asunto(s)
Antimaláricos/farmacología , Indoles/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Perros , Femenino , Humanos , Indoles/farmacocinética , Masculino , Ratones , Plasmodium berghei/efectos de los fármacos , Ratas
10.
ACS Med Chem Lett ; 2(9): 708-13, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900364

RESUMEN

Inhibition of dihydroorotate dehydrogenase (DHODH) for P. falciparum potentially represents a new treatment option for malaria, since DHODH catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and P. falciparum is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. We report herein the synthesis and structure-activity relationship of a series of 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamides that are potent inhibitors against PfDHODH but do not inhibit the human enzyme. On the basis of efficacy observed in three mouse models of malaria, acceptable safety pharmacology risk assessment and safety toxicology profile in rodents, lack of potential drug-drug interactions, acceptable ADME/pharmacokinetic profile, and projected human dose, 5-(4-cyano-2-methyl-1H-benzo[d]imidazol-1-yl)-N-cyclopropylthiophene-2-carboxamide 2q was identified as a potential drug development candidate.

11.
J Biol Chem ; 285(43): 33054-33064, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20702404

RESUMEN

Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED(50) values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Línea Celular , Dihidroorotato Deshidrogenasa , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Imidazoles/farmacología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Plasmodium berghei/enzimología , Plasmodium vivax/enzimología , Ratas
12.
Org Lett ; 12(18): 3998-4001, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20718474

RESUMEN

The development of a concise strategy to access 2-amino-3-hydroxy-indoles, which are disclosed as novel antimalarials with potent in vivo activity, is reported. Starting from isatins the target compounds are synthesized in 2 steps and in good yields via oxoindole intermediates by employing tert-butyldimethylsilyl amine (TBDMSNH(2)) as previously unexplored ammonia equivalent.


Asunto(s)
Aminas/química , Antimaláricos/síntesis química , Antimaláricos/uso terapéutico , Indoles/síntesis química , Malaria Falciparum/tratamiento farmacológico , Silanos/química , Animales , Indoles/uso terapéutico , Ratones , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad
13.
Bioorg Med Chem Lett ; 19(11): 2916-9, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19419862

RESUMEN

Modification of the structure of trypanosomal AdoMetDC inhibitor 1 (MDL73811) resulted in the identification of a new inhibitor 7a, which features a methyl substituent at the 8-position. Compound 7a exhibits improved potencies against both the trypanosomal AdoMetDC enzyme and parasites, and better blood brain barrier penetration than 1.


Asunto(s)
Adenosina/análogos & derivados , Adenosina/síntesis química , Adenosilmetionina Descarboxilasa/antagonistas & inhibidores , Tripanocidas/síntesis química , Tripanosomiasis Africana/tratamiento farmacológico , Adenosina/química , Adenosina/farmacología , Adenosilmetionina Descarboxilasa/metabolismo , Animales , Barrera Hematoencefálica , Descubrimiento de Drogas , Humanos , Ratones , Tripanocidas/química , Tripanocidas/farmacocinética , Trypanosoma brucei brucei/enzimología
14.
Antimicrob Agents Chemother ; 53(8): 3269-72, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19451291

RESUMEN

Genzyme 644131, 8-methyl-5'-{[(Z)-4-aminobut-2-enyl](methylamino)}adenosine, is an analog of the enzyme activated S-adenosylmethionine decarboxylase (AdoMetDC) inhibitor and the trypanocidal agent MDL-7381, 5-{[(Z)-4-aminobut-2-enyl](methylamino)}adenosine. The analog differs from the parent in having an 8-methyl group on the purine ring that bestows favorable pharmacokinetic, biochemical, and trypanocidal activities. The compound was curative in acute Trypanosoma brucei brucei and drug-resistant Trypanosoma brucei rhodesiense model infections, with single-dose activity in the 1- to 5-mg/kg/day daily dose range for 4 days against T. brucei brucei and 25- to 50-mg/kg twice-daily dosing against T. brucei rhodesiense infections. The compound was not curative in the TREU 667 central nervous system model infection but cleared blood parasitemia and extended time to recrudescence in several groups. This study shows that AdoMetDC remains an attractive chemotherapeutic target in African trypanosomes and that chemical changes in AdoMetDC inhibitors can produce more favorable drug characteristics than the lead compound.


Asunto(s)
Adenosina/análogos & derivados , Adenosilmetionina Descarboxilasa/antagonistas & inhibidores , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Adenosina/farmacología , Animales , Perros , Distribución Aleatoria , Ratas , Tripanocidas/síntesis química , Tripanocidas/química , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/patogenicidad , Trypanosoma brucei rhodesiense/patogenicidad , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/microbiología
15.
Antimicrob Agents Chemother ; 53(5): 2052-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19289530

RESUMEN

Trypanosomiasis remains a significant disease across the sub-Saharan African continent, with 50,000 to 70,000 individuals infected. The utility of current therapies is limited by issues of toxicity and the need to administer compounds intravenously. We have begun a program to pursue lead optimization around MDL 73811, an irreversible inhibitor of S-adenosylmethionine decarboxylase (AdoMetDC). This compound is potent but in previous studies cleared rapidly from the blood of rats (T. L. Byers, T. L. Bush, P. P. McCann, and A. J. Bitonti, Biochem. J. 274:527-533). One of the analogs synthesized (Genz-644131) was shown to be highly active against Trypanosoma brucei rhodesiense in vitro (50% inhibitory concentration, 400 pg/ml). Enzyme kinetic studies showed Genz-644131 to be approximately fivefold more potent than MDL 73811 against the T. brucei brucei AdoMetDC-prozyme complex. This compound was stable in vitro in rat and human liver microsomal and hepatocyte assays, was stable in rat whole-blood assays, did not significantly inhibit human cytochrome P450 enzymes, had no measurable efflux in CaCo-2 cells, and was only 41% bound by serum proteins. Pharmacokinetic studies of mice following intraperitoneal dosing showed that the half-life of Genz-644131 was threefold greater than that of MDL 73811 (7.4 h versus 2.5 h). Furthermore, brain penetration of Genz-644131 was 4.3-fold higher than that of MDL 73811. Finally, in vivo efficacy studies of T. b. brucei strain STIB 795-infected mice showed that Genz-644131 significantly extended survival (from 6.75 days for controls to >30 days for treated animals) and cured animals infected with T. b. brucei strain LAB 110 EATRO. Taken together, the data strengthen validation of AdoMetDC as an important parasite target, and these studies have shown that analogs of MDL 73811 can be synthesized with improved potency and brain penetration.


Asunto(s)
Adenosilmetionina Descarboxilasa/antagonistas & inhibidores , Desoxiadenosinas/química , Tripanocidas/química , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Células CACO-2 , Desoxiadenosinas/síntesis química , Desoxiadenosinas/farmacocinética , Desoxiadenosinas/farmacología , Humanos , Cinética , Ratones , Pruebas de Sensibilidad Parasitaria , Ratas , Resultado del Tratamiento , Tripanocidas/síntesis química , Tripanocidas/farmacocinética , Tripanocidas/farmacología , Trypanosoma brucei brucei/patogenicidad , Trypanosoma brucei rhodesiense/patogenicidad , Tripanosomiasis Africana/mortalidad , Tripanosomiasis Africana/parasitología
16.
J Med Chem ; 52(8): 2185-7, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19317450

RESUMEN

A library of approximately 2000 small molecules biased toward inhibition of histone deacetylases was assayed for antimalarial activity in a high-throughput P. falciparum viability assay. Active compounds were cross-analyzed for induction of histone hyperacetylation in a human myeloma cell line to identify HDAC inhibitors with selectivity for P. falciparum over the human host. To verify on-target selectivity, pfHDAC-1 was expressed and purified and a biochemical assay for pfHDAC-1 activity was established.


Asunto(s)
Antimaláricos/química , Inhibidores de Histona Desacetilasas , Plasmodium falciparum/enzimología , Bibliotecas de Moléculas Pequeñas , Acetilación , Animales , Antimaláricos/farmacología , Línea Celular Tumoral , Histona Desacetilasas/química , Humanos , Cinética , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Relación Estructura-Actividad
17.
Antimicrob Agents Chemother ; 52(6): 2190-5, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18391047

RESUMEN

Clostridium difficile-associated diarrhea (CDAD) is caused by the toxins the organism produces when it overgrows in the colon as a consequence of antibiotic depletion of normal flora. Conventional antibiotic treatment of CDAD increases the likelihood of recurrent disease by again suppressing normal bacterial flora. Tolevamer, a novel toxin-binding polymer, was developed to ameliorate the disease without adversely affecting normal flora. In the current study, tolevamer was tested for its ability to neutralize clostridial toxins produced by the epidemic BI/027 strains, thereby preventing toxin-mediated tissue culture cell rounding. The titers of toxin-containing C. difficile culture supernatants were determined using confluent cell monolayers, and then the supernatants were used in assays containing dilutions of tolevamer to determine the lowest concentration of tolevamer that prevented > or =90% cytotoxicity. Tolevamer neutralized toxins in the supernatants of all C. difficile strains tested. Specific antibodies against the large clostridial toxins TcdA and TcdB also neutralized the cytopathic effect, suggesting that tolevamer is specifically neutralizing these toxins and that the binary toxin (whose genes are carried by the BI/027 strains) is not a significant source of cytopathology against tissue culture cells in vitro.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Enterotoxinas/metabolismo , Polímeros/metabolismo , Polímeros/farmacología , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/metabolismo , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/toxicidad , Línea Celular Tumoral , Chlorocebus aethiops , Clostridioides difficile/metabolismo , Enterocolitis Seudomembranosa/microbiología , Enterotoxinas/inmunología , Enterotoxinas/toxicidad , Humanos , Pruebas de Neutralización , Ácidos Sulfónicos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...