Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651113

RESUMEN

The endoplasmic reticulum (ER) is the start site of the secretory pathway, where newly synthesized secreted and membrane proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Little is known about how post-translational modification events regulate packaging of cargo into COPII vesicles. The Saccharomyces cerevisiae protein Erv14, also known as cornichon, belongs to a conserved family of cargo receptors required for the selection and ER export of transmembrane proteins. In this work, we show the importance of a phosphorylation consensus site (S134) at the C-terminus of Erv14. Mimicking phosphorylation of S134 (S134D) prevents the incorporation of Erv14 into COPII vesicles, delays cell growth, exacerbates growth of sec mutants, modifies ER structure and affects localization of several plasma membrane transporters. In contrast, the dephosphorylated mimic (S134A) had less deleterious effects, but still modifies ER structure and slows cell growth. Our results suggest that a possible cycle of phosphorylation and dephosphorylation is important for the correct functioning of Erv14.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Transporte de Proteínas
2.
Mol Biol Cell ; 31(1): 3-6, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31887067

RESUMEN

In 1994, a convergence of ideas and collaborative research orchestrated by Randy Schekman led to the discovery of the coat protein complex II (COPII). In this Perspective, the chain of events enabling discovery of a new vesicle coat and progress on understanding COPII budding mechanisms are considered.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Vesículas Cubiertas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
3.
Mol Biol Cell ; 31(3): 209-220, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825724

RESUMEN

The Erv41-Erv46 complex is a conserved retrograde cargo receptor that retrieves ER resident proteins from Golgi compartments in a pH-dependent manner. Here we functionally dissect the Erv46 subunit and define an approximately 60 residue cysteine-rich region that is unique to the Erv46 family of proteins. This cysteine-rich region contains two vicinal cysteine pairs in CXXC and CCXXC configurations that are each required for retrieval activity in cells. Mutation of the individual cysteine residues produced stable Erv46 proteins that were partially reduced and form mixed-disulfide species on nonreducing gels. Conserved hydrophobic amino acids within the cysteine-rich region of Erv46 were also required for retrieval function in cells. In vitro binding experiments showed that this hydrophobic patch is required for direct cargo binding. Surprisingly, the Erv46 cysteine mutants continued to bind cargo in cell-free assays and produced an increased level of Erv46-cargo complexes in cell extracts suggesting that disulfide linkages in the cysteine-rich region perform a role in releasing bound cargo. On the basis of these findings, we propose that both pH and redox environments regulate cargo binding to a hydrophobic site within the cysteine-rich region of Erv46.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Secuencia Conservada , Cisteína/metabolismo , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Dominios Proteicos , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 294(25): 9690-9705, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31073031

RESUMEN

The architecture and organization of the Golgi complex depend on a family of coiled-coil proteins called golgins. Golgins are thought to form extended homodimers that are C-terminally anchored to Golgi membranes, whereas their N termini extend into the cytoplasm to initiate vesicle capture. Previously, we reported that the Saccharomyces cerevisiae golgin Coy1 contributes to intra-Golgi retrograde transport and binds to the conserved oligomeric Golgi (COG) complex and multiple retrograde Golgi Q-SNAREs (where SNARE is soluble NSF-attachment protein receptor). Here, using various engineered yeast strains, membrane protein extraction and fractionation methods, and in vitro binding assays, we mapped the Coy1 regions responsible for these activities. We also report that Coy1 assembles into a megadalton-size complex and that assembly of this complex depends on the most C-terminal coiled-coil and a conserved region between this coiled-coil and the transmembrane domain of Coy1. We found that this conserved region is necessary and sufficient for binding the SNARE protein Sed5 and the COG complex. Mutagenesis of conserved arginine residues within the C-terminal coiled-coil disrupted oligomerization, binding, and function of Coy1. Our findings indicate that the stable incorporation of Coy1 into a higher-order oligomer is required for its interactions and role in maintaining Golgi homeostasis. We propose that Coy1 assembles into a docking platform that directs COG-bound vesicles toward cognate SNAREs on the Golgi membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Sustancias Macromoleculares/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Aparato de Golgi , Proteínas de la Matriz de Golgi/genética , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética
5.
Curr Biol ; 28(12): 1950-1958.e6, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29887313

RESUMEN

Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Lisofosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Lisofosfolípidos/genética , Microsomas/metabolismo
6.
Mol Biol Cell ; 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794270

RESUMEN

Extended coiled-coil proteins of the Golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the Golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde Golgins (sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the Conserved Oligomeric Golgi complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi (sed5-1 and sly1-ts). To map Coy1 protein interactions, co-immunoprecipitation experiments revealed an association with the Conserved Oliogmeric Golgi (COG) complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5 and Sft1. Thus, our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles.

7.
Annu Rev Cell Dev Biol ; 32: 197-222, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27298089

RESUMEN

Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.


Asunto(s)
Vías Secretoras , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Humanos , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
8.
Mol Biol Cell ; 27(10): 1635-49, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27030673

RESUMEN

SLY41 was identified as a multicopy suppressor of loss of Ypt1, a Rab GTPase essential for COPII vesicle tethering at the Golgi complex. SLY41 encodes a polytopic membrane protein with homology to a class of solute transporter proteins, but how overexpression suppresses vesicle-tethering deficiencies is not known. Here we show that Sly41 is efficiently packaged into COPII vesicles and actively cycles between the ER and Golgi compartments. SLY41 displays synthetic negative genetic interactions with PMR1, which encodes the major Golgi-localized Ca(2+)/Mn(2+) transporter and suggests that Sly41 influences cellular Ca(2+) and Mn(2+) homeostasis. Experiments using the calcium probe aequorin to measure intracellular Ca(2+) concentrations in live cells reveal that Sly41 overexpression significantly increases cytosolic calcium levels. Although specific substrates of the Sly41 transporter were not identified, our findings indicate that localized overexpression of Sly41 to the early secretory pathway elevates cytosolic calcium levels to suppress vesicle-tethering mutants. In vitro SNARE cross-linking assays were used to directly monitor the influence of Ca(2+) on tethering and fusion of COPII vesicles with Golgi membranes. Strikingly, calcium at suppressive concentrations stimulated SNARE-dependent membrane fusion when vesicle-tethering activity was reduced. These results show that calcium positively regulates the SNARE-dependent fusion stage of ER-Golgi transport.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Sensoras del Calcio Intracelular/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Proteínas Portadoras/genética , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Aparato de Golgi/metabolismo , Fusión de Membrana , Unión Proteica , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
9.
Traffic ; 17(3): 191-210, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26650540

RESUMEN

Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium-binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47-Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Glicoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vías Secretoras , Proteínas de Transporte Vesicular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
10.
J Biol Chem ; 290(17): 10657-66, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25750128

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes play essential roles in catalyzing intracellular membrane fusion events although the assembly pathway and molecular arrangement of SNARE complexes in membrane fusion reactions are not well understood. Here we monitored interactions of the R-SNARE protein Sec22 through a cysteine scanning approach and detected efficient formation of cross-linked Sec22 homodimers in cellular membranes when cysteine residues were positioned in the SNARE motif or C terminus of the transmembrane domain. When specific Sec22 cysteine derivatives are present on both donor COPII vesicles and acceptor Golgi membranes, the formation of disulfide cross-links provide clear readouts on trans- and cis-SNARE arrangements during this fusion event. The Sec22 transmembrane domain was required for efficient homodimer formation and for membrane fusion suggesting a functional role for Sec22 homodimers. We propose that Sec22 homodimers promote assembly of higher-order SNARE complexes to catalyze membrane fusion. Sec22 is also reported to function in macroautophagy and in formation of endoplasmic reticulum-plasma membrane contact sites therefore homodimer assembly may regulate Sec22 activity across a range of cellular processes.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Cisteína/química , Fusión de Membrana/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Curr Biol ; 25(4): R151-3, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25689910

RESUMEN

Cytoplasmic coat protein complexes perform central roles in sorting protein constituents within the endomembrane system. A new study reveals that the COPII coat operates through dual recognition of signals in a sorting receptor and its bound cargo to promote efficient export from the endoplasmic reticulum.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología
12.
J Cell Biol ; 208(2): 197-209, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25583996

RESUMEN

Signal-dependent sorting of proteins in the early secretory pathway is required for dynamic retention of endoplasmic reticulum (ER) and Golgi components. In this study, we identify the Erv41-Erv46 complex as a new retrograde receptor for retrieval of non-HDEL-bearing ER resident proteins. In cells lacking Erv41-Erv46 function, the ER enzyme glucosidase I (Gls1) was mislocalized and degraded in the vacuole. Biochemical experiments demonstrated that the luminal domain of Gls1 bound to the Erv41-Erv46 complex in a pH-dependent manner. Moreover, in vivo disturbance of the pH gradient across membranes by bafilomycin A1 treatment caused Gls1 mislocalization. Whole cell proteomic analyses of deletion strains using stable isotope labeling by amino acids in culture identified other ER resident proteins that depended on the Erv41-Erv46 complex for efficient localization. Our results support a model in which pH-dependent receptor binding of specific cargo by the Erv41-Erv46 complex in Golgi compartments identifies escaped ER resident proteins for retrieval to the ER in coat protein complex I-formed transport carriers.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/química , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Vacuolas/enzimología , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo
14.
Nat Rev Mol Cell Biol ; 14(6): 382-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23698585

RESUMEN

Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Animales , Transporte Biológico Activo/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coat de Complejo I/metabolismo , Humanos , Células Vegetales/metabolismo , Plantas
15.
Genetics ; 193(2): 383-410, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23396477

RESUMEN

The secretory pathway is responsible for the synthesis, folding, and delivery of a diverse array of cellular proteins. Secretory protein synthesis begins in the endoplasmic reticulum (ER), which is charged with the tasks of correctly integrating nascent proteins and ensuring correct post-translational modification and folding. Once ready for forward traffic, proteins are captured into ER-derived transport vesicles that form through the action of the COPII coat. COPII-coated vesicles are delivered to the early Golgi via distinct tethering and fusion machineries. Escaped ER residents and other cycling transport machinery components are returned to the ER via COPI-coated vesicles, which undergo similar tethering and fusion reactions. Ultimately, organelle structure, function, and cell homeostasis are maintained by modulating protein and lipid flux through the early secretory pathway. In the last decade, structural and mechanistic studies have added greatly to the strong foundation of yeast genetics on which this field was built. Here we discuss the key players that mediate secretory protein biogenesis and trafficking, highlighting recent advances that have deepened our understanding of the complexity of this conserved and essential process.


Asunto(s)
Biosíntesis de Proteínas , Transporte de Proteínas , Vías Secretoras , Levaduras/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Levaduras/genética
16.
Cell Logist ; 2(1): 28-42, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22645708

RESUMEN

Saccharomyces cerevisiae transport protein particle (TRAPP) is a family of related multisubunit complexes required for endoplasmic reticulum-to-Golgi transport (TRAPP I), endosome-to-Golgi transport (TRAPP II) or cytosol to vacuole targeting (TRAPP III). To gain insight into the relationship between these complexes, we generated random and targeted mutations in the Trs23p core subunit. Remarkably, at physiological salt concentrations only two peaks (TRAPP I and a high molecular weight peak) are detected in wild-type cells. As the salt was raised, the high molecular weight peak resolved into TRAPP II and III peaks. Deletion of a Saccharomycotina-specific domain of Trs23p resulted in destabilization of TRAPP I but had no effect on TRAPP II or III. This mutation had no observable growth phenotype, normal levels of Ypt1p-directed guanine nucleotide exchange factor activity in vivo and did not display any in vivo nor in vitro blocks in membrane traffic. Biochemical analysis indicated that TRAPP I could be produced from the TRAPP II/III peak in vitro by increasing the salt concentration. Our data suggest that the SMS domain of Trs23p is responsible for the in vitro appearance of TRAPP I in S. cerevisiae. The implications of these findings are discussed.

17.
J Biol Chem ; 286(28): 25039-46, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21550981

RESUMEN

Retrograde vesicular transport from the Golgi to the ER requires the Dsl1 tethering complex, which consists of the three subunits Dsl1, Dsl3, and Tip20. It forms a stable complex with the SNAREs Ufe1, Use1, and Sec20 to mediate fusion of COPI vesicles with the endoplasmic reticulum. Here, we analyze molecular interactions between five SNAREs of the ER (Ufe1, Use1, Sec20, Sec22, and Ykt6) and the Dsl1 complex in vitro and in vivo. Of the two R-SNAREs, Sec22 is preferred over Ykt6 in the Dsl-SNARE complex. The NSF homolog Sec18 can displace Ykt6 but not Sec22, suggesting a regulatory function for Ykt6. In addition, our data also reveal that subunits of the Dsl1 complex (Dsl1, Dsl3, and Tip20), as well as the SNAREs Ufe1 and Sec20, are ER-resident proteins that do not seem to move into COPII vesicles. Our data support a model, in which a tethering complex is stabilized at the organelle membrane by binding to SNAREs, recognizes the incoming vesicle via its coat and then promotes its SNARE-mediated fusion.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Fusión de Membrana/fisiología , Complejos Multiproteicos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Retículo Endoplásmico/genética , Modelos Biológicos , Complejos Multiproteicos/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-21482742

RESUMEN

Vesicular transport of protein and lipid cargo from the endoplasmic reticulum (ER) to cis-Golgi compartments depends on coat protein complexes, Rab GTPases, tethering factors, and membrane fusion catalysts. ER-derived vesicles deliver cargo to an ER-Golgi intermediate compartment (ERGIC) that then fuses with and/or matures into cis-Golgi compartments. The forward transport pathway to cis-Golgi compartments is balanced by a retrograde directed pathway that recycles transport machinery back to the ER. How trafficking through the ERGIC and cis-Golgi is coordinated to maintain organelle structure and function is poorly understood and highlights central questions regarding trafficking routes and organization of the early secretory pathway.


Asunto(s)
Aparato de Golgi/fisiología , Vías Secretoras , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Fusión de Membrana , Proteínas de la Fusión de la Membrana/fisiología , Modelos Biológicos , Estructura Terciaria de Proteína , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/fisiología
19.
Mol Biol Cell ; 22(9): 1430-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21372176

RESUMEN

Lipid sensing mechanisms at the endoplasmic reticulum (ER) coordinate an array of biosynthetic pathways. A major phospholipid regulatory circuit in yeast is controlled by Scs2p, an ER membrane protein that binds the transcriptional repressor protein Opi1p. Cells grown in the absence of inositol sequester Scs2p-Opi1p at the ER and derepress target genes including INO1. We recently reported that Yet1p and Yet3p, the yeast homologues of BAP29 and BAP31, are required for normal growth in the absence of inositol. Here we show that the Yet1p-Yet3p complex acts in derepression of INO1 through physical association with Scs2p-Opi1p. Yet complex binding to Scs2p-Opi1p was enhanced by inositol starvation, although the interaction between Scs2p and Opi1p was not influenced by YET1 or YET3 deletion. Interestingly, live-cell imaging analysis indicated that Opi1p does not efficiently relocalize to the ER during inositol starvation in yet3Δ cells. Together our data demonstrate that a physical association between the Yet complex and Scs2p-Opi1p is required for proper localization of the Opi1p repressor to ER membranes and subsequent INO1 derepression.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Inositol , Proteínas de la Membrana/genética , Mutación , Mio-Inositol-1-Fosfato Sintasa/genética , Fenotipo , Fosfolípidos/biosíntesis , Fosfolípidos/genética , Unión Proteica , Proteínas Represoras/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
20.
Mol Biol Cell ; 22(2): 216-29, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21119004

RESUMEN

The role of specific membrane lipids in transport between endoplasmic reticulum (ER) and Golgi compartments is poorly understood. Using cell-free assays that measure stages in ER-to-Golgi transport, we screened a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands to investigate requirements in yeast. The pleckstrin homology (PH) domain of human Fapp1, which binds phosphatidylinositol-4-phosphate (PI(4)P) specifically, was a strong and specific inhibitor of anterograde transport. Analysis of wild type and mutant PH domain proteins in addition to recombinant versions of the Sac1p phosphoinositide-phosphatase indicated that PI(4)P was required on Golgi membranes for fusion with coat protein complex II (COPII) vesicles. PI(4)P inhibition did not prevent vesicle tethering but significantly reduced formation of soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes between vesicle and Golgi SNARE proteins. Moreover, semi-intact cell membranes containing elevated levels of the ER-Golgi SNARE proteins and Sly1p were less sensitive to PI(4)P inhibitors. Finally, in vivo analyses of a pik1 mutant strain showed that inhibition of PI(4)P synthesis blocked anterograde transport from the ER to early Golgi compartments. Together, the data presented here indicate that PI(4)P is required for the SNARE-dependent fusion stage of COPII vesicles with the Golgi complex.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas SNARE/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Mutación , Fosfatos de Fosfatidilinositol/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...