Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 133: 90-8, 2014 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24721593

RESUMEN

The Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) composite films are deposited using spray pyrolysis method onto glass and FTO coated substrates. The structural, morphological, optical and photocatalytic properties of Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) thin films are studied. XRD analysis confirms that films are polycrystalline with rhombohedral and tetragonal crystal structures for Fe2O3 and TiO(2) respectively. The photocatalytic activity was tested for the degradation of Rhrodamine B (Rh B) in aqueous medium. The rate constant (-k) was evaluated as a function of the initial concentration of species. Substantial reduction in concentrations of organic species was observed from COD and TOC analysis. Photocatalytic degradation effect is relatively higher in case of the TiO(2)/Fe(2)O(3) than TiO(2) and Fe(2)O(3) thin film photoelectrodes in the degradation of Rh B and 98% removal efficiency of Rh B is obtained after 20min. The photocatalytic experimental results indicate that TiO(2)/α-Fe(2)O(3) photoelectrode is promising material for removing of water pollutants.


Asunto(s)
Compuestos Férricos/química , Luz , Nanoestructuras/química , Rodaminas/química , Titanio/química , Catálisis , Electrodos , Conductividad Térmica , Termodinámica
2.
J Phys Condens Matter ; 25(21): 212203, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23656722

RESUMEN

Le Bail and Rietveld analysis of high resolution synchrotron x-ray powder diffraction (SXRPD) data shows unambiguous signatures of the failure of the commensurate 3M modulation model. Using (3 + 1) dimensional superspace group formalism, we have not only confirmed the incommensurate modulation in the premartensite phase with a modulation wavevector of q = 0.337 61(5)c* but also determined the superspace group (Immm(00γ)s00), atomic positions and amplitude of modulations for the incommensurate premartensite phase of Ni2MnGa for the first time. Our results may have important implications in the understanding of the martensitic transition and hence the magnetic field induced strains.

3.
J Phys Condens Matter ; 25(4): 046001, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23238326

RESUMEN

The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.


Asunto(s)
Galio/química , Manganeso/química , Níquel/química , Espectroscopía de Absorción de Rayos X/métodos , Cristalización , Electrónica , Electrones , Magnetismo , Ensayo de Materiales , Modelos Estadísticos , Fotones , Temperatura
4.
Phys Rev Lett ; 109(21): 216403, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23215602

RESUMEN

We use hard x-ray photoemission to resolve a controversial issue regarding the mechanism for the formation of quasicrystalline solids, i.e., the existence of a pseudogap at the Fermi level. Our data from icosahedral fivefold Al-Pd-Mn and Al-Cu-Fe quasicrystals demonstrate the presence of a pseudogap, which is not observed in surface sensitive low energy photoemission because the spectrum is affected by a metallic phase near the surface. In contrast to Al-Pd-Mn, we find that in Al-Cu-Fe the pseudogap is fully formed; i.e., the density of states reaches zero at E(F) indicating that it is close to the metal-insulator phase boundary.

5.
Rev Sci Instrum ; 83(4): 046107, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22559593

RESUMEN

A modified design of a CaF(2)/acetone bandpass photon detector that uses Kr as a filter gas to tune the energy resolution is presented. Our design combines two standard single window detector tubes to build the Kr filter gas chamber. Synchrotron radiation has been used to determine the energy resolution of the detector, as a function of Kr pressure. The improvement in the detector energy resolution by 250 meV compared to the CaF(2)/acetone detector is better than that reported earlier. Substantial variation in the shape of the CaF(2)/acetone detector response functions is observed for different acetone pressure (≤3 mbar), and anode voltage (≤800 V). Our analysis reveals that the changes in the shape of the detector response function are associated to different regions of the detector operation.

6.
Phys Rev Lett ; 109(24): 246601, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23368355

RESUMEN

Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn(2)NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn(2)NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.

7.
Rev Sci Instrum ; 82(9): 093901, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21974594

RESUMEN

We report a bandpass ultraviolet photon detector for inverse photoemission spectroscopy with energy resolution of 82 ± 2 meV. The detector (Sr(0.7)Ca(0.3)F(2)/acetone) consists of Sr(0.7)Ca(0.3)F(2) entrance window with energy transmission cutoff of 9.85 eV and acetone as detection gas with 9.7 eV photoionization threshold. The response function of the detector, measured using synchrotron radiation, has a nearly Gaussian shape. The n = 1 image potential state of Cu(100) and the Fermi edge of silver have been measured to demonstrate the improvement in resolution compared to the CaF(2)/acetone detector. To show the advantage of improved resolution of the Sr(0.7)Ca(0.3)F(2)/acetone detector, the metal to semiconductor transition in Sn has been studied. The pseudogap in the semiconducting phase of Sn could be identified, which is not possible with the CaF(2)/acetone detector because of its worse resolution.

8.
Rev Sci Instrum ; 81(4): 043907, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20441350

RESUMEN

We present a design of a compact and versatile sample holder meant for studying complex (ternary) metallic crystals that require sputtering and annealing to high temperatures under ultrahigh vacuum (10(-10) mbar range) for obtaining the clean, ordered and stoichiometric surface. A resistive heater is fixed to the sample holder and not to the sample plate, and thus can be thoroughly degassed initially to high temperatures without heating the sample. The heater, which is mounted vertically on the sample holder frame, slides into the sample plate of rectangular cross-section during sample transfer. For efficient cooling that is required for adlayer deposition, Cu braids can be pressed on the sample plate from both sides through a screw mechanism. The sample holder has 5 degrees of freedom including a tilt rotation. The sample holder has been used to study different metal surfaces such as ferromagnetic shape memory alloys, alkali metal and Mn adlayers on Al-Pd-Mn quasicrystal, aluminum metal, and Al-Mn alloys. Here, our recent results on temperature dependent low energy electron diffraction study of Ni(2)MnGa(100) are presented.

9.
Phys Rev Lett ; 104(3): 036803, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20366669

RESUMEN

Aluminum bulk, surface, and multiple plasmons have been observed in the core-level spectra of rare gas (Ne, Ar, and Xe) nanobubbles in Al, whose intensities are even higher than those of Al metal. Both intrinsic and extrinsic bulk plasmons are detected, but they exhibit diametrically opposite intensity variation due to change in the size and implantation depth of the bubbles. Furthermore, the existence of bubble surface plasmon is demonstrated.

10.
J Phys Condens Matter ; 22(44): 446001, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21403357

RESUMEN

The spin-dependent electron momentum densities in Ni(2)MnIn and Ni(2)Mn(1.4)In(0.6) shape memory alloy using magnetic Compton scattering with 182.2 keV circularly polarized synchrotron radiation are reported. The magnetic Compton profiles were measured at different temperatures ranging between 10 and 300 K. The profiles have been analyzed mainly in terms of Mn 3d electrons to determine their role in the formation of the total spin moment. We have also computed the spin polarized energy bands, partial and total density of states, Fermi surfaces and spin moments using full potential linearized augmented plane wave and spin polarized relativistic Korringa-Kohn-Rostoker methods. The total spin moments obtained from our magnetic Compton profile data are explained using both the band structure models. The present Compton scattering investigations are also compared with magnetization measurements.

11.
J Phys Condens Matter ; 21(40): 405005, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21832407

RESUMEN

Pseudomorphic growth of thin elemental metal films is often observed on a variety of crystalline solids. On quasicrystalline surfaces with their complex structure and the absence of translational periodicity, the situation is different since elemental metals do not exhibit quasicrystalline order, and hence the specific interaction between overlayer and substrate is decisive. Here we study the growth of manganese films on an icosahedral i-Al-Pd-Mn alloy with a view to establishing the growth mode and electronic structure. Although we observe an exponential intensity variation of the adlayer and substrate related x-ray photoemission spectroscopy (XPS) peaks, low energy electron diffraction (LEED) shows that Mn adlayers do not exhibit quasicrystallinity. The detailed structure of the Mn 2p core level line reveals considerable electronic structure differences between the quasicrystalline and elemental metal environment. Evidence of a substantial local magnetic moment on the Mn atoms in the overlayer (about 2.8  µ(B)) is obtained from the Mn 3s exchange splitting.

12.
Phys Rev Lett ; 92(11): 115506, 2004 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-15089150

RESUMEN

Two fundamental manifestations of Al conduction electron response to Ar atom core hole in the final state of photoemission have been studied in implanted Ar bubbles in Al(111). Ar 2p binding energy and the Doniach-Sunjic asymmetry of the core-level line shape vary systematically as functions of Ar+ implantation energy and number of ions bombarded (fluence). The observations are explained by relating the strength of Al conduction electron screening to the size of the Ar nanobubbles.

13.
Phys Rev Lett ; 86(22): 5108-11, 2001 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-11384433

RESUMEN

Angle-resolved photoemission spectra from Na adlayers on Al(111) reveal features which behave like quantum well resonances although the substrate provides no confining barrier. These features are observed in a narrow photon energy range where overlayer collective excitations cause resonant enhancement of the photoemission intensity. The quantum well behavior is shown to be due to surface resonances of the Na/Al system. The resonances are observable using photoemission because of spatial confinement and dynamical enhancement of the local electric field within the Na films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA