Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38305972

RESUMEN

For the first time, a synergistic energy-efficient combination of microwave-xenon (MW-XE) irradiations in presence of photoactive ternary acidic deep eutectic solvents (TADES) has been applied for intensification of ethyl levulinate synthesis from delignified sugarcane bagasse (DSB) under mild (90 min, 90 °C) and environmentally benign process conditions. The Taguchi orthogonal designed optimized conditions (20 W/cm3 of MW specific irradiation power input, 1 mol/mol of FeCl3 to citric acid ratio, 90 min of reaction time, 150 W of XE specific power input) rendered maximum 61.3 mol% of EL yield (selectivity: 87.70 [Formula: see text] 0.5%). Remarkably, synergistic effect of MW and XE irradiation significantly enhanced the EL yield (61.3 mol%) compared to the individual MW (34.52 mol%) and XE (22.67 mol%) irradiation at otherwise optimized reaction conditions. Moreover, the MWXE irradiated reactor (MWXER) exhibited a significant 79.10% increase in EL yield compared to the conventional thermal reactor (CTR), at the expense of 10% less energy consumption. The ethyl levulinate could be recovered efficiently through green protocol from reaction mix resulting in high purity (97 [Formula: see text] 0.5%) and TADES was sustainably reused in the process. The optimally generated product EL when blended (5 and 10 vol.%) with B10 and B20 (10% and 20% biodiesel-diesel blend) could provide 21-31% reduction in HC and 7.3-36% reduction in CO in comparison with petro-diesel. It was also explored that, at similar optimal parametric combinations, the TADES produced 29.5% greater EL yield in comparison with the standard ionic liquid BMIMCl. The life cycle environmental impact analysis (LCEIA) of the overall process revealed that the 5 vol.% EL blending with B10 contributed lowest environmental impacts mitigating marine ecotoxicity, human toxicity, fossil depletion, and climate change by 77.9%, 77.4%, 78.4% and 77.5%, respectively.

2.
Proc Natl Acad Sci U S A ; 120(51): e2309900120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085774

RESUMEN

How acute respiratory distress syndrome progresses from underlying disease or trauma is poorly understood, and there are no generally accepted treatments resulting in a 40% mortality rate. However, during the inflammation that accompanies this disease, the phospholipase A2 concentration increases in the alveolar fluids leading to the hydrolysis of bacterial, viral, and lung surfactant phospholipids into soluble lysolipids. We show that if the lysolipid concentration in the subphase reaches or exceeds its critical micelle concentration, the surface tension, γ, of dipalmitoyl phosphatidylcholine (DPPC) or Curosurf monolayers increases and the dilatational modulus, [Formula: see text], decreases to that of a pure lysolipid interface. This is consistent with DPPC being solubilized in lysolipid micelles and being replaced by lysolipid at the interface. These changes lead to [Formula: see text] which is the criterion for the Laplace instability that can lead to mechanical instabilities during lung inflation, potentially causing alveolar collapse. These findings provide a mechanism behind the alveolar collapse and uneven lung inflation during ARDS.


Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria , Humanos , Pulmón , Fosfolipasas A2 , Tensoactivos
3.
ACS Omega ; 8(14): 12865-12877, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37065019

RESUMEN

The application of antimicrobial peptides has emerged as an alternative therapeutic tool to encounter against multidrug resistance of different pathogenic organisms. α-Melanocyte stimulating hormone (α-MSH), an endogenous neuropeptide, is found to be efficient in eradicating infection of various kinds of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). However, the chemical stability and efficient delivery of these biopharmaceuticals (i.e., α-MSH) to bacterial cells with a significant antibacterial effect remains a key challenge. To address this issue, we have developed a chitosan-cholesterol polymer using a single-step, one-pot, and simple chemical conjugation technique, where α-MSH is loaded with a significantly high amount (37.7%), and the final product is obtained as chitosan-cholesterol α-MSH polymer-drug nanoconjugates. A staphylococcal growth inhibition experiment was performed using chitosan-cholesterol α-MSH and individual controls. α-MSH and chitosan-cholesterol both show bacterial growth inhibition by a magnitude of 50 and 79%, respectively. The killing efficiency of polymer-drug nanoconjugates was very drastic, and almost no bacterial colony was observed (∼100% inhibition) after overnight incubation. Phenotypic alternation was observed in the presence of α-MSH causing changes in the cell structure and shape, indicating stress on Staphylococcus aureus. As a further consequence, vigorous cell lysis with concomitant release of the cellular material in the nearby medium was observed after treatment of chitosan-cholesterol α-MSH nanoconjugates. This vigorous lysis of the cell structure is associated with extensive aggregation of the bacterial cells evident in scanning electron microscopy (SEM). The dose-response experiment was performed with various concentrations of chitosan-cholesterol α-MSH nanoconjugates to decipher the degree of the bactericidal effect. The concentration of α-MSH as low as 1 pM also shows significant inhibition of bacterial growth (∼40% growth inhibition) of Staphylococcus aureus. Despite playing an important role in inhibiting bacterial growth, our investigation on hemolytic assay shows that chitosan-cholesterol α-MSH is significantly nontoxic at a wide range of concentrations. In a nutshell, our analysis demonstrated novel antimicrobial activity of nanoparticle-conjugated α-MSH, which could be used as future therapeutics against multidrug-resistant Staphylococcus aureus and other types of bacterial cells.

4.
J Colloid Interface Sci ; 629(Pt A): 125-135, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36063630

RESUMEN

HYPOTHESIS: The surface dilatational and shear moduli of surfactant and protein interfacial layers can be derived from surface pressures measured with a Wilhelmy plate parallel, ΔΠpar and perpendicular ΔΠperp to the barriers in a Langmuir trough. EXPERIMENTAL: Applying area oscillations, A0+ ΔAeiωt, in a rectangular Langmuir trough induces changes in surface pressure, ΔΠpar and ΔΠperp for monolayers of soluble palmitoyl-lysophosphatidylcholine (LysoPC), insoluble dipalmitoylphosphatidylcholine (DPPC), and the protein ß-lactoglobulin to evaluate Es∗+Gs∗=A0ΔΠparΔA and Es∗-Gs∗=A0ΔΠperpΔA. Gs∗ was independently measured with a double-wall ring apparatus (DWR) and Es∗ by area oscillations of hemispherical bubbles in a capillary pressure microtensiometer (CPM) and the results were compared to the trough measurements. FINDINGS: For LysoPC and DPPC, A0ΔΠparΔA≅A0ΔΠperpΔA meaning Es∗≫Gs∗ and Es∗≅A0ΔΠparΔA≅A0ΔΠperpΔA. Trough values for Es∗ were quantitatively similar to CPM when corrected for interfacial curvature. DWR showed G∗ was 4 orders of magnitude smaller than Es∗ for both LysoPC and DPPC. For ß-lactoglobulin films, A0ΔΠparΔA>A0ΔΠperpΔA and Es∗ and Gs∗ were in qualitative agreement with independent CPM and DWR measurements. For ß-lactoglobulin, both Es∗ and Gs∗ varied with film age and history on the trough, suggesting the evolution of the protein structure.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Lisofosfatidilcolinas , Propiedades de Superficie , Reología/métodos , Lactoglobulinas/química , Tensoactivos , Agua
5.
J Vis Exp ; (187)2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36155417

RESUMEN

Adsorption of surface-active molecules to fluid-fluid interfaces is ubiquitous in nature. Characterizing these interfaces requires measuring surfactant adsorption rates, evaluating equilibrium surface tensions as a function of bulk surfactant concentration, and relating how surface tension changes with changes in the interfacial area following equilibration. Simultaneous visualization of the interface using fluorescence imaging with a high-speed confocal microscope allows the direct evaluation of structure-function relationships. In the capillary pressure microtensiometer (CPM), a hemispherical air bubble is pinned at the end of the capillary in a 1 mL volume liquid reservoir. The capillary pressure across the bubble interface is controlled via a commercial microfluidic flow controller that allows for model-based pressure, bubble curvature, or bubble area control based on the Laplace equation. Compared to previous techniques such as the Langmuir trough and pendant drop, the measurement and control precision and response time are greatly enhanced; capillary pressure variations can be applied and controlled in milliseconds. The dynamic response of the bubble interface is visualized via a second optical lens as the bubble expands and contracts. The bubble contour is fit to a circular profile to determine the bubble curvature radius, R, as well as any deviations from circularity that would invalidate the results. The Laplace equation is used to determine the dynamic surface tension of the interface. Following equilibration, small pressure oscillations can be imposed by the computer-controlled microfluidic pump to oscillate the bubble radius (frequencies of 0.001-100 cycles/min) to determine the dilatational modulus The overall dimensions of the system are sufficiently small that the microtensiometer fits under the lens of a high-speed confocal microscope allowing fluorescently tagged chemical species to be quantitatively tracked with submicron lateral resolution.


Asunto(s)
Tensoactivos , Adsorción , Microscopía Confocal , Tensión Superficial , Tensoactivos/química
6.
Front Bioeng Biotechnol ; 9: 785937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926430

RESUMEN

Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.

7.
Soft Matter ; 17(18): 4751-4765, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33861293

RESUMEN

Micrometer-sized water droplets dispersed in diesel fuel are stabilized by the fuel's surface-active additives, such as mono-olein and poly(isobutylene)succinimide (PIBSI), making the droplets challenging for coalescing filters to separate. Dynamic material properties found from interfacial rheology are known to influence the behavior of microscale droplets in coalescing filters. In this work, we study the interfacial dilatational properties of water-in-fuel interfaces laden with mono-olein and PIBSI, with a fuel phase of clay-treated ultra-low sulphur diesel (CT ULSD). First, the dynamic interfacial tension (IFT) is measured using pendant drop tensiometry, and a curvature-dependent form of the Ward and Tordai diffusion equation is applied for extracting the diffusivity of the surfactants. Additionally, Langmuir kinetics are applied to the dynamic IFT results to obtain the maximum surface concentration (Γ∞) and ratio of adsorption to desorption rate constants (κ). We then use a capillary pressure microtensiometer to measure the interfacial dilatational modulus, and further extract the characteristic frequency of surfactant exchange (ω0) by fitting a model assuming diffusive exchange between the interface and bulk. In this measurement, 50-100 µm diameter water droplets are pinned at the tip of a glass capillary in contact with the surfactant-containing fuel phase, and small amplitude capillary pressure oscillations over a range of frequencies from 0.45-20 rad s-1 are applied to the interface, inducing changes in interfacial tension and area to yield the dilatational modulus, E*(ω). Over the range of concentrations studied, the dilatational modulus of CT ULSD with either mono-olein or PIBSI increases with a decrease in bulk concentration and plateaus at the lowest concentrations of mono-olein. Characteristic frequency (ω0) values extracted from the fit are compared with those calculated using equilibrium surfactant parameters (κ and Γ∞) derived from pendant drop tensiometry, and good agreement is found between these values. Importantly, the results imply that diffusive exchange models based on the equilibrium relationships between surfactant concentration and interfacial tension can be used to infer the dynamic dilatational behavior of complex surfactant systems, such as the water-in-diesel fuel interfaces in this study.

8.
Soft Matter ; 16(29): 6890-6901, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32643749

RESUMEN

In the lungs, the Laplace pressure, ΔP = 2γ/R, would be higher in smaller alveoli than larger alveoli unless the surface tension, γ decreases with alveolar interfacial area, A, such that 2ε > γ in which ε = A(dγ/dA) is the dilatational modulus. In Acute Respiratory Distress Syndrome (ARDS), lipase activity due to the immune response to an underlying trauma or disease causes single chain lysolipid concentrations to increase in the alveolar fluids via hydrolysis of double-chain phospholpids in bacterial, viral, and normal cell membranes. Increasing lysolipid concentrations decrease the dilatational modulus dramatically at breathing frequencies if the soluble lysolipid has sufficient time to diffuse off the interface, causing 2ε < γ, thereby potentially inducing the "Laplace Instability", in which larger alveoli have a lower internal pressure than smaller alveoli. This can lead to uneven lung inflation, alveolar flooding, and poor gas exchange, typical symptoms of ARDS. While the ARDS lung contains a number of lipid and protein species in the alveolar fluid in addition to lysolipids, the surface activity and frequency dependent dilatational modulus of lysolipid suggest how inflammation may lead to the lung instabilities associated with ARDS. At high frequencies, even at high lysolipid concentrations, 2ε - γ > 0, which may explain the benefits ARDS patients receive from high frequency oscillatory ventilation.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Inflamación , Alveolos Pulmonares , Tensión Superficial
9.
J Colloid Interface Sci ; 536: 30-41, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30342409

RESUMEN

HYPOTHESIS: It is possible to control the absolute and relative magnitude of repulsive and attractive interactions and hence microstructure of interfacial particles at and air/water interface by adjusting subphase composition. It should be possible to modify interfacial viscoelasticity from elastic to viscous behavior through these changes to interfacial microstructure. EXPERIMENTS: Particle laden interfaces are made from micron sized polystyrene at an air/water interface. The inter-particle interactions are controlled by the subphase salt concentration and addition of both non-ionic and ionic surfactants. These interfaces are then characterized using an interfacial rheometer with a custom visualization system. FINDINGS: Three distinct microstructures are observed. Low repulsion and high attraction systems exhibit a soft glassy rheology with a disordered but dense microstructure. Creating high repulsion results in a dense hexagonal crystal. Finally, in systems with reduced repulsion and attraction, a hexatic phase can be observed. Each of these microstructures exhibit unique interfacial viscoelastic behavior. These results indicate that control over the properties of these interfaces, and hence Pickering emulsions, is possible through manipulation of interparticle forces.

10.
ACS Omega ; 3(12): 18499-18509, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458422

RESUMEN

A glass fiber-epoxy resin (GFER) framework derived from mixed waste printed circuit boards (MWPCBs) was utilized to prepare a cost-effective, reusable Mo-Cu bimetallic Bronsted-Lewis solid acid catalyst through wet-impregnation under near-infrared radiation (NIRR) activation. The efficacy of the novel Mo-Cu catalyst was assessed in the synthesis of glucose through hydrolysis of jute (Corchorus olitorius) fiber, and the process parameters were optimized (Mo precursor loading: 1.0 wt %, catalyst concentration: 5 wt %, hydrolysis temperature: 80 °C, and hydrolysis time: 10 min) through Taguchi orthogonal design. The GFER support and the prepared catalysts were characterized through thermogravimetric, X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Brunauer-Emmett-Teller (BET)-density functional theory, and TPD analyses. The optimal Mo-Cu catalyst and the GFER support possessed 45.377 and 7.049 m2/g BET area, 0.04408 and 0.02317 cc/g pore volume, 1.9334 and 0.7482 nm modal pore size, and surface acidity of 0.48 and 0.40 mmol NH3/g catalyst, respectively. X-ray photoelectron spectroscopy bands confirmed the coexistence of Mo6+ and Cu2+ species; XRD and FTIR analyses indicated the presence of MoO3 and CuO crystalline phases in all prepared catalysts. The optimal catalyst prepared through NIRR (wavelength 0.75-1.4 µm)-activated hydrothermal treatment resulted in a significantly greater glucose yield (75.84 mol %) than that achieved (53.64 mol %) using a conventionally prepared catalyst. Thus, an energy-efficient application of NIRR (100 W) could significantly improve catalytic properties over conventional hydrothermal treatment (500 W). The present investigation provides an innovative application of MWPCB-derived GFER as a promising cost-effective support for the preparation of highly efficient inexpensive solid catalysts for sustainable synthesis of glucose from low-cost waste jute fiber.

11.
Langmuir ; 31(3): 891-7, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25548951

RESUMEN

Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

12.
Artículo en Inglés | MEDLINE | ID: mdl-25353799

RESUMEN

The role of interfacial rheology on the bulk linear viscoelastic moduli of low concentration bovine albumin solutions is probed. Previously reported soft gel properties of these systems were attributed to either protein aggregation or organization within the bulk. Instead, these behaviors are shown to be attributable to the measurement error caused by interfacial rheology due to adsorption of bovine serum albumin to the air and water interface. Even at low bulk concentrations, fast interfacial adsorption results in erroneous measurements. When these effects are removed, the solutions are viscous dominated with a dynamic viscosity slightly larger than water.


Asunto(s)
Modelos Químicos , Pliegue de Proteína , Reología/métodos , Albúmina Sérica Bovina/química , Soluciones/química , Agua/química , Simulación por Computador , Módulo de Elasticidad , Modelos Lineales , Modelos Biológicos , Propiedades de Superficie , Viscosidad
13.
Langmuir ; 30(32): 9752-60, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25068732

RESUMEN

The study of particle laden interfaces has increased significantly due to the increasing industrial use of particle stabilized foams and Pickering emulsions, whose bulk rheology and stability are highly dependent on particle laden interface's interfacial rheology, which is a function of interfacial microstructure. To understand the physical mechanisms that dictate interfacial rheology of particle laden interfaces requires correlating rheology to microstructure. To achieve this goal, a double wall ring interfacial rheometer has been modified to allow real time, simultaneous interfacial visualization and shear rheology measurements. The development of this tool is outlined, and its ability to provide novel and unique measurements is demonstrated on a sample system. This tool has been used to examine the role of microstructure on the steady shear rheology of densely packed, aggregated particle laden interfaces at three surface concentrations. Through examination of the rheology and analysis of interfacial microstructure response to shear, a transition from shear thinning due to aggregated cluster breakup to yielding at a slip plane within the interface has been identified. Interestingly, it is found that aggregated interfaces transition to yielding well before they reached a jammed state. Furthermore, these systems undergo significant shear induced order when densely packed. These results indicate that the mechanics of these interfaces are not simply jammed or unjammed and that the interfacial rheology relationship with microstructure can give us significant insight into understanding how to engineer particle laden interfaces in the future. By examining both rheology and microstructure, the mechanisms that dictate observed rheology are now understood and can be used to predict and control the rheology of the interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...