Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sports Med Open ; 10(1): 66, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844675

RESUMEN

BACKGROUND: Palmitoylethanolamide (PEA) has analgesic/anti-inflammatory properties that may be a suitable alternative to over-the-counter (OTC) non-steroidal analgesics/anti-inflammatories. While OTC pain medications can impair strength training adaptations, the mechanism of action of PEA is distinct from these and it may not negatively affect skeletal muscle adaptations to strength training. METHODS: The primary aim of this study was to investigate the effects of daily PEA supplementation (350 mg Levagen + equivalent to 300 mg PEA) combined with 8-weeks of resistance training on lean body mass with secondary aims addressing strength, power, sleep, and wellbeing compared to placebo (PLA) in young, healthy, active adults. In a randomized, controlled, double-blinded trial, 52 untrained, recreationally active participants aged 18-35 y were allocated to either the PEA or PLA groups. Participants consumed either 2 × 175 mg Levagen + PEA or identically matched maltodextrin capsules during an 8-week period of whole-body resistance training. This trial assessed the pre- to post- changes in total and regional lean body mass, muscular strength (1-RM bench, isometric mid-thigh pull), muscular power [countermovement jump (CMJ), bench throw], pain associated with exercise training, sleep, and wellbeing compared with the PEA or PLA condition. RESULTS: 48 Participants were included in the final intention to treat (ITT) analysis and we also conducted per protocol (PP) analysis (n = 42). There were no significant between-group differences for total or regional lean muscle mass post-intervention. There was a significantly higher jump height (CMJ) at week 10 in the PEA group compared to the PLA (Adjusted mean difference [95% CI] p-value; ITT: - 2.94 cm [- 5.15, - 0.74] p = 0.010; PP: - 2.93 cm [- 5.31, - 0.55] p = 0.017). The PLA group had higher 1-RM bench press post-intervention compared with the PEA group (ITT: 2.24 kg [0.12, 4.37] p = 0.039; PP: 2.73 kg [0.40, 5.06] p = 0.023). No significant treatment effects were noted for any of the other outcomes. CONCLUSION: PEA supplementation, when combined with 8 weeks of strength training, did not impair lean mass gains and it resulted in significantly higher dynamic lower-body power when compared with the PLA condition. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR: ACTRN12621001726842p).

2.
Appl Physiol Nutr Metab ; 49(5): 659-666, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301228

RESUMEN

We sought to assess the effects of repeated cold-water immersions (CWI) on respiratory, metabolic, and sympathoadrenal responses to graded exercise in hypoxia. Sixteen (2 female) participants (age: 21.2 ± 1.3 years; body fat: 12.3 ± 7.7%; body surface area 1.87 ± 0.16 m2, VO2peak: 48.7 ± 7.9 mL/kg/min) underwent 6 CWI in 12.0 ± 1.2 °C. Each CWI was 5 min, twice daily, separated by ≥4 h, for three consecutive days, during which metabolic data were collected. The day before and after the repeated CWI intervention, participants ran in normobaric hypoxia (FIO2 = 0.135) for 4 min at 25%, 40%, 60%, and 75% of their sea level peak oxygen consumption (VO2peak). CWI had no effect on VO2 (p > 0.05), but reduced the VE (CWI #1: 27.1 ± 17.8 versus CWI #6: 19.9 ± 12.1 L/min) (p < 0.01), VT (CWI #1: 1.3 ± 0.4 vs CWI #6: 1.1 ± 0.4 L) (p < 0.01), and VE:VO2 (CWI #1: 53.5 ± 24.1 vs CWI #6: 41.6 ± 20.5) (p < 0.01) during subsequent CWI. Further, post exercise plasma epinephrine was lower after CWI compared to before (103.3 ± 43.1; 73.4 ± 34.6 pg/mL) (p = 0.03), with no change in pre-exercising values (75.4 ± 30.7; 72.5 ± 25.9 pg/mL). While these changes were noteworthy, it is important to acknowledge there were no changes in pulmonary (VE, VT, and VE:VO2) or metabolic (VO2, SmO2, and SpO2) variables across multiple hypoxic exercise workloads following repeated CWI. CWI habituated participants to cold water, but this did not lead to adaptations during exercise in normobaric hypoxia.


Asunto(s)
Frío , Ejercicio Físico , Hipoxia , Inmersión , Consumo de Oxígeno , Humanos , Femenino , Hipoxia/fisiopatología , Masculino , Adulto Joven , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Adaptación Fisiológica/fisiología , Epinefrina/sangre , Agua , Aclimatación/fisiología , Adulto
3.
J Sleep Res ; : e14141, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185736

RESUMEN

Insufficient sleep is a growing global problem, with poor sleep associated with many negative health and performance outcomes. Previous reviews investigating the effect of diet on sleep have highlighted the amino acid tryptophan as a promising sleep-promoting nutrient, with the richest food source of tryptophan, ⍺-lactalbumin, requiring further investigation. Therefore, this systematic review aimed to review the existing evidence of association between ⍺-lactalbumin and sleep. Four electronic databases (CINAHL Complete, Embase, MEDLINE Complete, and SPORTDiscus with Full Text) were searched from database inception to March 2023, with primary research articles included if they contained α-lactalbumin as an independent variable, an outcome measure of sleep or sleepiness, and participants were ≥ 18 years old. Eight studies were reviewed, with four studies recruiting athletic populations (50%) and four recruiting healthy participants (50%). Sleep or sleepiness was measured objectively in six studies (75%), with two studies employing polysomnography and four utilizing actigraphy to assess sleep. Across the studies, 20-60 g of ⍺-lactalbumin was supplemented, with five studies (63%) observing a positive association between α-lactalbumin and sleep. Sleep-onset latency was the primary sleep metric improved following evening supplementation of α-lactalbumin (≤ 3.5 hr pre-sleep), with no studies observing any negative associations with sleep. Data from this review suggest that individuals that have difficulty initiating sleep may benefit most from pre-sleep α-lactalbumin supplementation. Further research is required to establish the effect that α-lactalbumin has on sleep architecture, through the use of more comprehensive sleep analysis tools such as portable electroencephalography or polysomnography, in combination with stringent dietary controls.

4.
Biol Sport ; 40(1): 101-109, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636200

RESUMEN

There is growing interest in the use of systemic hypoxia to improve the training adaptations to resistance exercise. Hypoxia is a well-known stimulator of the immune system, yet the leukocyte responses to this training modality remain uncharacterised. The current study characterised the acute leukocyte responses to resistance exercise in normobaric hypoxia. The single-blinded, randomised trial recruited 13 healthy males aged 18-35 years to perform a bout of resistance exercise in normobaric hypoxia (14.4% O2; n = 7) or normoxia (20.9% O2; n = 6). Participants completed 4 × 10 repetitions of lower and upper body exercises at 70% 1-repetition maximum. Oxygen saturation, rating of perceived exertion and heart rate were measured during the session. Venous blood was sampled before and up to 24 hours post-exercise to quantify blood lactate, glucose and leukocytes including neutrophils, lymphocytes, monocytes, eosinophils and basophils. Neutrophils were higher at 120 and 180 minutes post-exercise in hypoxia compared to normoxia (p<0.01), however lymphocytes, monocytes, eosinophils and basophils were unaffected by hypoxia. Oxygen saturation was significantly lower during the four exercises in hypoxia compared to normoxia (p < 0.001). However, there were no differences in blood lactate, heart rate, perceived exertion or blood glucose between groups. Hypoxia amplified neutrophils following resistance exercise, though all other leukocyte subsets were unaffected. Therefore, hypoxia does not appear to detrimentally affect the lymphocyte, monocyte, eosinophil or basophil responses to exercise.

5.
Nutrients ; 14(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014779

RESUMEN

Many athletic populations report poor sleep, especially during intensive training and competition periods. Recently, diet has been shown to significantly affect sleep in general populations; however, little is known about the effect diet has on the sleep of athletically trained populations. With sleep critical for optimal recovery and sports performance, this systematic review aimed to evaluate the evidence demonstrating that dietary factors influence the sleep of athletically trained populations. Four electronic databases were searched from inception to May 2022, with primary research articles included if they contained a dietary factor(s), an outcome measure of sleep or sleepiness, and participants could be identified as 'athletically trained'. Thirty-five studies were included, with 21 studies assessed as positive quality, 13 as neutral, and one as negative. Sleep or sleepiness was measured objectively in 46% of studies (n = 16). The review showed that evening (≥5 p.m.) caffeine intakes >2 mg·kg−1 body mass decreased sleep duration and sleep efficiency, and increased sleep latency and wake after sleep onset. Evening consumption of high glycaemic index carbohydrates and protein high in tryptophan may reduce sleep latency. Although promising, more research is required before the impact of probiotics, cherry juice, and beetroot juice on the sleep of athletes can be resolved. Athletic populations experiencing sleep difficulties should be screened for caffeine use and trial dietary strategies (e.g., evening consumption of high GI carbohydrates) to improve sleep.


Asunto(s)
Rendimiento Atlético , Trastornos del Inicio y del Mantenimiento del Sueño , Atletas , Cafeína/farmacología , Carbohidratos , Humanos , Sueño , Somnolencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...