Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatology ; 76(5): 1345-1359, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35253915

RESUMEN

BACKGROUND AND AIMS: Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS: A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS: These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Humanos , Animales , Receptor Toll-Like 2 , Factores de Crecimiento Nervioso/metabolismo , Receptor Toll-Like 3 , Receptor Toll-Like 6 , Proteínas Supresoras de Tumor/metabolismo , Inflamación/metabolismo , Antiinflamatorios , ARN Mensajero , Aminoácidos , Receptores de Netrina
2.
JHEP Rep ; 3(6): 100354, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34704004

RESUMEN

BACKGROUND & AIMS: Immune-mediated induction of cytidine deaminase APOBEC3B (A3B) expression leads to HBV covalently closed circular DNA (cccDNA) decay. Here, we aimed to decipher the signalling pathway(s) and regulatory mechanism(s) involved in A3B induction and related HBV control. METHODS: Differentiated HepaRG cells (dHepaRG) knocked-down for NF-κB signalling components, transfected with siRNA or micro RNAs (miRNA), and primary human hepatocytes ± HBV or HBVΔX or HBV-RFP, were treated with lymphotoxin beta receptor (LTßR)-agonist (BS1). The biological outcomes were analysed by reverse transcriptase-qPCR, immunoblotting, luciferase activity, chromatin immune precipitation, electrophoretic mobility-shift assay, targeted-bisulfite-, miRNA-, RNA-, genome-sequencing, and mass-spectrometry. RESULTS: We found that canonical and non-canonical NF-κB signalling pathways are mandatory for A3B induction and anti-HBV effects. The degree of immune-mediated A3B production is independent of A3B promoter demethylation but is controlled post-transcriptionally by the miRNA 138-5p expression (hsa-miR-138-5p), promoting A3B mRNA decay. Hsa-miR-138-5p over-expression reduced A3B levels and its antiviral effects. Of note, established infection inhibited BS1-induced A3B expression through epigenetic modulation of A3B promoter. Twelve days of treatment with a LTßR-specific agonist BS1 is sufficient to reduce the cccDNA pool by 80% without inducing significant damages to a subset of cancer-related host genes. Interestingly, the A3B-mediated effect on HBV is independent of the transcriptional activity of cccDNA as well as on rcDNA synthesis. CONCLUSIONS: Altogether, A3B represents the only described enzyme to target both transcriptionally active and inactive cccDNA. Thus, inhibiting hsa-miR-138-5p expression should be considered in the combinatorial design of new therapies against HBV, especially in the context of immune-mediated A3B induction. LAY SUMMARY: Immune-mediated induction of cytidine deaminase APOBEC3B is transcriptionally regulated by NF-κB signalling and post-transcriptionally downregulated by hsa-miR-138-5p expression, leading to cccDNA decay. Timely controlled APOBEC3B-mediated cccDNA decay occurs independently of cccDNA transcriptional activity and without damage to a subset of cancer-related genes. Thus, APOBEC3B-mediated cccDNA decay could offer an efficient therapeutic alternative to target hepatitis B virus chronic infection.

3.
Hepatology ; 74(4): 1766-1781, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33991110

RESUMEN

BACKGROUND AND AIMS: Therapeutic strategies against HBV focus, among others, on the activation of the immune system to enable the infected host to eliminate HBV. Hypoxia-inducible factor 1 alpha (HIF1α) stabilization has been associated with impaired immune responses. HBV pathogenesis triggers chronic hepatitis-related scaring, leading inter alia to modulation of liver oxygenation and transient immune activation, both factors playing a role in HIF1α stabilization. APPROACH AND RESULTS: We addressed whether HIF1α interferes with immune-mediated induction of the cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B; A3B), and subsequent covalently closed circular DNA (cccDNA) decay. Liver biopsies of chronic HBV (CHB) patients were analyzed by immunohistochemistry and in situ hybridization. The effect of HIF1α induction/stabilization on differentiated HepaRG or mice ± HBV ± LTßR-agonist (BS1) was assessed in vitro and in vivo. Induction of A3B and subsequent effects were analyzed by RT-qPCR, immunoblotting, chromatin immunoprecipitation, immunocytochemistry, and mass spectrometry. Analyzing CHB highlighted that areas with high HIF1α levels and low A3B expression correlated with high HBcAg, potentially representing a reservoir for HBV survival in immune-active patients. In vitro, HIF1α stabilization strongly impaired A3B expression and anti-HBV effect. Interestingly, HIF1α knockdown was sufficient to rescue the inhibition of A3B up-regulation and -mediated antiviral effects, whereas HIF2α knockdown had no effect. HIF1α stabilization decreased the level of v-rel reticuloendotheliosis viral oncogene homolog B protein, but not its mRNA, which was confirmed in vivo. Noteworthy, this function of HIF1α was independent of its partner, aryl hydrocarbon receptor nuclear translocator. CONCLUSIONS: In conclusion, inhibiting HIF1α expression or stabilization represents an anti-HBV strategy in the context of immune-mediated A3B induction. High HIF1α, mediated by hypoxia or inflammation, offers a reservoir for HBV survival in vivo and should be considered as a restricting factor in the development of immune therapies.


Asunto(s)
Citidina Desaminasa/genética , Hepatitis B Crónica/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Hígado/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Factor de Transcripción ReIB/genética , Aminoácidos Dicarboxílicos/farmacología , Animales , Línea Celular , Citidina Desaminasa/metabolismo , ADN Circular/metabolismo , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Virus de la Hepatitis B , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/virología , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Receptor beta de Linfotoxina/agonistas , Ratones , Viabilidad Microbiana , Antígenos de Histocompatibilidad Menor/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción ReIB/efectos de los fármacos , Factor de Transcripción ReIB/metabolismo
4.
Biochem Biophys Res Commun ; 495(4): 2425-2431, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29277614

RESUMEN

In the liver, HBV and HCV infections, exposure to toxics, genetic and metabolic disorders may induce endoplasmic reticulum (ER) stress and the unfolding protein response (UPR). The UPR allows cells to reach ER homeostasis after lumen overload, but also fosters survival of damaged cells and therefore HCC onset. Dependence receptors such as UNC5A trigger apoptosis when unbound to their ligands. We have previously shown that the main dependence receptor ligand, netrin-1, could protect cells against UPR-induced apoptosis through sustained translation. In this study, we show that UNC5A is cumulatively downregulated by the UPR at the transcriptional level in vitro and at the translational level both in vitro and in vivo. We have found that the 5'-untranslated region of the UNC5A mRNA shares a certain homology degree with that of netrin-1, suggesting linked translational regulatory mechanisms, at least during the initial stages of the UPR. RNAi and forced expression studies identified UNC5A as a modulator of cell death in the context of the UPR. UNC5A decrease of association with polysomes and expression oriented cells towards UPR-associated hepatocytic survival. Such data indicate that cooperation between the UPR and UNC5A depletion as previously observed by ourselves in HCC patients samples may foster liver cancer development and growth.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Netrina-1/genética , Receptores de Superficie Celular/genética , Respuesta de Proteína Desplegada/genética , Apoptosis/genética , Carcinogénesis , Línea Celular Tumoral , Represión Epigenética/genética , Humanos , Receptores de Netrina
5.
EMBO Mol Med ; 8(10): 1143-1161, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27596438

RESUMEN

Targeted therapies with MAPK inhibitors (MAPKi) are faced with severe problems of resistance in BRAF-mutant melanoma. In parallel to the acquisition of genetic mutations, melanoma cells may also adapt to the drugs through phenotype switching. The ZEB1 transcription factor, a known inducer of EMT and invasiveness, is now considered as a genuine oncogenic factor required for tumor initiation, cancer cell plasticity, and drug resistance in carcinomas. Here, we show that high levels of ZEB1 expression are associated with inherent resistance to MAPKi in BRAFV600-mutated cell lines and tumors. ZEB1 levels are also elevated in melanoma cells with acquired resistance and in biopsies from patients relapsing while under treatment. ZEB1 overexpression is sufficient to drive the emergence of resistance to MAPKi by promoting a reversible transition toward a MITFlow/p75high stem-like and tumorigenic phenotype. ZEB1 inhibition promotes cell differentiation, prevents tumorigenic growth in vivo, sensitizes naive melanoma cells to MAPKi, and induces cell death in resistant cells. Overall, our results demonstrate that ZEB1 is a major driver of melanoma cell plasticity, driving drug adaptation and phenotypic resistance to MAPKi.


Asunto(s)
Antineoplásicos/farmacología , Plasticidad de la Célula , Resistencia a Medicamentos , Melanocitos/efectos de los fármacos , Melanocitos/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Adaptación Fisiológica , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...