Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659742

RESUMEN

Background: Phospholamban (PLN) is a key regulator of cardiac function connecting adrenergic signaling and calcium homeostasis. The R9C mutation of PLN is known to cause early onset dilated cardiomyopathy (DCM) and premature death, yet the detailed mechanisms underlie the pathologic remodeling process are not well defined in human cardiomyocytes. The aim of this study is to unravel the role of PLN R9C in DCM and identify potential therapeutic targets. Methods: PLN R9C knock-in (KI) and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated and comprehensively examined for their expression profile, contractile function, and cellular signaling under both baseline conditions and following functional challenges. Results: PLN R9C KI iPSC-CMs exhibited near-normal morphology and calcium handling, slightly increased contractility, and an attenuated response to ß-adrenergic activation compared to wild-type (WT) cells. However, treatment with a maturation medium (MM) has induced fundamentally different remodeling in the two groups: while it improved the structural integrity and functional performance of WT cells, the same treatment result in sarcomere disarrangement, calcium handling deficiency, and further disrupted adrenergic signaling in PLN R9C KI cells. To understand the mechanism, transcriptomic analysis showed the enrichment of protein homeostasis signaling pathways specifically in PLN R9C KI cells in response to the MM treatment and increased contractile demands. Further studies also indicated elevated ROS levels, interrupted autophagic flux, and increased pentamer PLN aggregation in functionally challenged KI cells. These results were further confirmed in patient-specific iPSC-CM models, suggesting that functional stresses exacerbate the deficiencies in PLN R9C cells through disrupting protein homeostasis. Indeed, treating stressed patient cells with autophagy-accelerating reagents, such as metformin and rapamycin, has restored autophagic flux, mitigated sarcomere disarrangement, and partially rescued ß-adrenergic signaling and cardiac function. Conclusions: PLN R9C leads to a mild increase of calcium recycling and contractility. Functional challenges further enhanced contractile and proteostasis stress, leading to autophagic overload, structural remodeling, and functional deficiencies in PLN R9C cardiomyocytes. Activation of autophagy signaling partially rescues these effects, revealing a potential therapeutic target for DCM patients with the PLN R9C mutation. Graphic abstracts: A graphic abstract is available for this article.

2.
Sci Transl Med ; 16(729): eadd2029, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198571

RESUMEN

Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , ARN Largo no Codificante , Humanos , Ratas , Animales , Ratones , Alelos , Hipertensión Pulmonar/genética , Histonas , ARN Largo no Codificante/genética , Roedores , Lisina , Hipertensión Pulmonar Primaria Familiar , Hipoxia/genética , Metiltransferasas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
3.
Biomolecules ; 13(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671453

RESUMEN

Danon disease (DD) is caused by mutations of the gene encoding lysosomal-associated membrane protein type 2 (LAMP2), which lead to impaired autophagy, glycogen accumulation, and cardiac hypertrophy. However, it is not well understood why a large portion of DD patients develop arrhythmia and sudden cardiac death. In the current study, we generated LAMP2 knockout (KO) human iPSC-derived cardiomyocytes (CM), which mimic the LAMP2 dysfunction in DD heart. Morphologic analysis demonstrated the sarcomere disarrangement in LAMP2 KO CMs. In functional studies, LAMP2 KO CMs showed near-normal calcium handling at base level. However, treatment of pro-maturation medium (MM) exaggerated the disease phenotype in the KO cells as they exhibited impaired calcium recycling and increased irregular beating events, which recapitulates the pro-arrhythmia phenotypes of DD patients. Further mechanistic study confirmed that MM treatment significantly enhanced the autophagic stress in the LAMP2 KO CMs, which was accompanied by an increase of both cellular and mitochondrial reactive oxygen species (ROS) levels. Excess ROS accumulation in LAMP2 KO CMs resulted in the over-activation of calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) and arrhythmogenesis, which was partially rescued by the treatment of ROS scavenger. In summary, our study has revealed ROS induced CaMKIIδ overactivation as a key mechanism that promotes cardiac arrhythmia in DD patients.


Asunto(s)
Enfermedad por Depósito de Glucógeno de Tipo IIb , Células Madre Pluripotentes Inducidas , Humanos , Enfermedad por Depósito de Glucógeno de Tipo IIb/genética , Enfermedad por Depósito de Glucógeno de Tipo IIb/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo
4.
Stem Cell Res ; 56: 102544, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34583280

RESUMEN

As the most common cause of heart failure, dilated cardiomyopathy (DCM) is characterized by dilated ventricles and weakened contractile force. Mutations in the calcium handling protein phospholamban (PLN) are known to cause inherited DCM. Here, we introduced a PLN-R9C mutation in a healthy control induced pluripotent stem cell (iPSC) line using CRISPR/Cas9. The genome-edited iPSC line showed typical pluripotent cell morphology, robust expression of pluripotency markers, normal karyotype, and the capacity to differentiate into all three germ layers in vitro. The PLN-R9C iPSC line provides a valuable resource to dissect the molecular mechanisms underlying PLN mutation-related DCM.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Proteínas de Unión al Calcio , Cardiomiopatía Dilatada/genética , Humanos , Mutación/genética
5.
Hum Cell ; 34(3): 771-784, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33486722

RESUMEN

Epidermal differentiation and barrier function require well-controlled matriptase and prostasin proteolysis, in which the Kunitz-type serine protease inhibitor HAI-1 represents the primary enzymatic inhibitor for both proteases. HAI-1, however, also functions as a chaperone-like protein necessary for normal matriptase synthesis and intracellular trafficking. Furthermore, other protease inhibitors, such as antithrombin and HAI-2, can also inhibit matriptase and prostasin in solution or in keratinocytes. It remains unclear, therefore, whether aberrant increases in matriptase and prostasin enzymatic activity would be the consequence of targeted deletion of HAI-1 and so subsequently contribute to the epidermal defects observed in HAI-1 knockout mice. The impact of HAI-1 deficiency on matriptase and prostasin proteolysis was, here, investigated in HaCaT human keratinocytes. Our results show that HAI-1 deficiency causes an increase in prostasin proteolysis via increased protein expression and zymogen activation. It remains unclear, however, whether HAI-1 deficiency increases "net" prostasin enzymatic activity because all of the activated prostasin was detected in complexes with HAI-2, suggesting that prostasin enzymatic activity is still under tight control in HAI-1-deficient keratinocytes. Matriptase proteolysis is, however, unexpectedly suppressed by HAI-1 deficiency, as manifested by decreases in zymogen activation, shedding of active matriptase, and matriptase-dependent prostasin zymogen activation. This suppressed proteolysis results mainly from the reduced ability of HAI-1-deficient HaCaT cells to activate matriptase and the rapid inhibition of nascent active matriptase by HAI-2 and other yet-to-be-identified protease inhibitors. Our study provides novel insights with opposite impacts by HAI-1 deficiency on matriptase versus prostasin proteolysis in keratinocytes.


Asunto(s)
Eliminación de Gen , Queratinocitos/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/fisiología , Proteolisis , Serina Endopeptidasas/metabolismo , Piel/citología , Piel/metabolismo , Células HaCaT , Humanos , Proteínas Inhibidoras de Proteinasas Secretoras/deficiencia
6.
PLoS One ; 12(1): e0170944, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28125689

RESUMEN

Mutations of hepatocyte growth factor activator inhibitor (HAI)-2 in humans cause sodium loss in the gastrointestinal (GI) tract in patients with syndromic congenital sodium diarrhea (SCSD). Aberrant regulation of HAI-2 target protease(s) was proposed as the cause of the disease. Here functional linkage of HAI-2 with two membrane-associated serine proteases, matriptase and prostasin was analyzed in Caco-2 cells and the human GI tract. Immunodepletion-immunoblot analysis showed that significant proportion of HAI-2 is in complex with activated prostasin but not matriptase. Unexpectedly, prostasin is expressed predominantly in activated forms and was also detected in complex with HAI-1, a Kunitz inhibitor highly related to HAI-2. Immunohistochemistry showed a similar tissue distribution of prostasin and HAI-2 immunoreactivity with the most intense labeling near the brush borders of villus epithelial cells. In contrast, matriptase was detected primarily at the lateral plasma membrane, where HAI-1 was also detected. The tissue distribution profiles of immunoreactivity against these proteins, when paired with the species detected suggests that prostasin is under tight control by both HAI-1 and HAI-2 and matriptase by HAI-1 in human enterocytes. Furthermore, HAI-1 is a general inhibitor of prostasin in a variety of epithelial cells. In contrast, HAI-2 was not found to be a significant inhibitor for prostasin in mammary epithelial cells or keratinocytes. The high levels of constitutive prostasin zymogen activation and the selective prostasin inhibition by HAI-2 in enterocytes suggest that dysregulated prostasin proteolysis may be particularly important in the GI tract when HAI-2 function is lost and/or dysregulated.


Asunto(s)
Membrana Celular/metabolismo , Enterocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Células CACO-2 , Humanos , Mucosa Intestinal/metabolismo
7.
Breast Cancer Res Treat ; 150(2): 347-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25773930

RESUMEN

The gene for Pregnancy Up-regulated Non-ubiquitous Calmodulin Kinase (Pnck), a novel calmodulin kinase, is expressed in roughly one-third of human breast tumors, but not in adjoining normal tissues. Pnck alters EGFR stability and function, prompting this study to determine if Pnck expression has implications for HER-2 function and HER-2-directed therapy. The frequency of Pnck expression in HER-2-amplified breast cancer was examined by immunohistochemistry, and the impact of Pnck expression in the presence of HER-2 amplification on cancer cell proliferation, clonogenicity, cell-cycle progression, and Trastuzumab sensitivity was examined in vitro by transfection of cells with Pnck. Cell signaling was probed by Western blot analysis and shRNA-mediated PTEN knockdown. Over 30 % of HER-2 amplified tumors were found to express Pnck. Expression of Pnck in SkBr3 cells resulted in increased proliferation, clonal growth, cell-cycle progression, and Trastuzumab resistance. Pnck expression increases Hsp27 expression, Trastuzumab partial agonist activity on HER-2 Y1248 phosphorylation, and suppressed extracellular signal-regulated kinase (ERK1/2) activity. Knockdown of endogenous PTEN upregulated ERK1/2 activity, inhibited cellular proliferation, and partially sensitized Pnck/SKBr3 cells to Trastuzumab treatment. Increased proliferation of the Pnck/SKBr3 cells was observed following expression of protein phosphatase active and lipid phosphatase dead PTEN mutant but not the total phosphatase dead PTEN mutant. Co-overexpression of HER-2 and Pnck results in enhanced tumor cell proliferation and Trastuzumab resistance that is paradoxically dependent on PTEN protein phosphatase activity. This suggests that Pnck may be a marker of Trastuzumab resistance and possibly a therapeutic target.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Fosfohidrolasa PTEN/fisiología , Receptor ErbB-2/genética , Trastuzumab/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Resistencia a Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Amplificación de Genes , Expresión Génica , Humanos , Neurregulina-1/fisiología , Puntos de Control de la Fase S del Ciclo Celular
8.
Cell Cycle ; 13(6): 961-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24552815

RESUMEN

Pregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK1/2 activity. Ras is constitutively active at high cell density, and Pnck does not alter Ras activation, suggesting that Pnck inhibition of ERK1/2 activity is independent of Ras activity. Pnck inhibition of serum-induced ERK1/2 activity is lost in cells in which phosphatase and tensin homolog (PTEN) is suppressed, suggesting that Pnck inhibition of ERK1/2 activity is mediated by PTEN. Overexpression of protein phosphatase-active but lipid phosphatase-dead PTEN protein inhibits ERK1/2 activity in control cells and enhances Pnck-mediated ERK1/2 inhibition, suggesting that Pnck increases availability of protein phosphatase active PTEN for ERK1/2 inhibition. Pnck is a stress-responsive kinase; however, serum-induced p38 MAP kinase activity is also downregulated by Pnck in a Pnck kinase- and PTEN-dependent manner, similar to ERK1/2 inhibition. Pnck overexpression increases proliferation, which is inhibited by PTEN knockdown, implying that PTEN acts as a paradoxical promoter of proliferation in ERK1/2 and p38 MAP kinase phosphorylation-inhibited, Pnck-overexpressing cells. Overall, these data reveal a novel function of Pnck in the regulation of ERK1/2 and p38 MAP kinase activity and cell proliferation, which is mediated by paradoxical PTEN functions. The possible biological implications of these data are discussed.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Proliferación Celular , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Anisomicina/farmacología , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Activación Enzimática , Activadores de Enzimas/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Imidazoles/farmacología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas ras/metabolismo
9.
Am J Pathol ; 183(4): 1306-17, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24070417

RESUMEN

Membrane-associated serine protease matriptase is widely expressed by epithelial/carcinoma cells in which its proteolytic activity is tightly controlled by the Kunitz-type protease inhibitor, hepatocyte growth factor activator inhibitor (HAI-1). We demonstrate that, although matriptase is not expressed in lymphoid hyperplasia, roughly half of the non-Hodgkin B-cell lymphomas analyzed express significant amounts of matriptase. Furthermore, a significant proportion of these tumors express matriptase in the absence of HAI-1. Aggressive Burkitt lymphoma was more likely than indolent follicular lymphoma to express matriptase alone (86% versus 36%). In the absence of significant HAI-1 expression, the lymphoma cells activate and shed active matriptase when the cells are stimulated with mildly acidic buffer or the hypoxia-mimicking agent, CoCl2. The shed active matriptase can initiate pericellular proteolytic cascades by activating urokinase-type plasminogen activator on the cell surface of monocytes, and it can activate prohepatocyte growth factor. In addition, matriptase knockdown suppressed proliferation and colony-forming ability of neoplastic B cells in culture and growth as tumor xenografts in mice. Furthermore, exogenous expression of HAI-1 significantly suppressed proliferation of neoplastic B cells. These studies suggest that dysregulated pericellular proteolysis as a result of unregulated matriptase expression with limited HAI-1 may contribute to the pathological characteristics of several human B-cell lymphomas through modulation of the tumor microenvironment and enhanced tumor growth.


Asunto(s)
Linfoma de Células B/enzimología , Linfoma de Células B/patología , Proteolisis , Serina Endopeptidasas/metabolismo , Animales , Linfocitos B/enzimología , Linfocitos B/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/patología , Ratones , Ratones SCID , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Am J Physiol Cell Physiol ; 300(5): C1139-54, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325639

RESUMEN

We have recently described a novel role for pregnancy-upregulated non-ubiquitous calmodulin kinase (Pnck) in the induction of ligand-independent epidermal growth factor receptor (EGFR) degradation (Deb TB, Coticchia CM, Barndt R, Zuo H, Dickson RB, and Johnson MD. Am J Physiol Cell Physiol 295: C365-C377, 2008). In the current communication, we explore the probable mechanism by which Pnck induces ligand-independent EGFR degradation. Pnck-induced EGFR degradation is calcium/calmodulin independent and is regulated by cell density, with the highest EGFR degradation observed at low cell density. Pnck is a novel heat shock protein 90 (Hsp90) client protein that can be co-immunoprecipitated with Hsp90. Treatment of Pnck-overexpressing cells with the pharmacologic Hsp90 inhibitor geldanamycin results in enhanced EGFR degradation, and destruction of Pnck. In cells in which Pnck is inducing EGFR degradation, we observed that Hsp90 exhibits reduced electrophoretic mobility, and through mass spectrometric analysis of immunopurified Hsp90 protein we demonstrated enhanced phosphorylation at threonine 89 and 616 (in both Hsp90-α and -ß) and serine 391 (in Hsp90-α). Kinase-active Pnck protein is degraded by the proteasome, concurrent with EGFR degradation. A Pnck mutant (T171A) protein with suppressed kinase activity induced EGFR degradation to essentially the same level as wild-type (WT) Pnck, suggesting that Pnck kinase activity is not required for the induction of EGFR degradation. Although EGFR is degraded, overexpression of WT Pnck paradoxically promoted cellular proliferation, whereas cells expressing mutant Pnck (T171A) were growth inhibited. WT Pnck promoted S to G(2) transition, but cells expressing the mutant exhibited higher residency time in S phase. Basal MAP kinase activity was inhibited by WT Pnck but not by mutant T171A Pnck protein. Cyclin-dependent kinase (Cdk) inhibitor p21/Cip-1/Waf-1 was transcriptionally suppressed downstream to MAP kinase inhibition by WT Pnck, but not the mutant protein. Collectively, these data suggest that 1) Pnck induces ligand-independent EGFR degradation most likely through perturbation of Hsp90 chaperone activity due to Hsp90 phosphorylation, 2) EGFR degradation is coupled to proteasomal degradation of Pnck, and 3) modulation of basal MAP kinase activity, p21/Cip-1/Waf-1 expression, and cellular growth by Pnck is independent of Pnck-induced ligand-independent EGFR degradation.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Receptores ErbB/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Benzoquinonas/farmacología , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Lactamas Macrocíclicas/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina/metabolismo , Treonina/metabolismo
11.
Am J Physiol Cell Physiol ; 291(1): C40-9, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16467405

RESUMEN

Matriptase and its cognate inhibitor, hepatocyte growth factor activator inhibitor-1 (HAI-1), have been implicated in carcinoma onset and malignant progression. However, the pathological mechanisms of matriptase activation are not defined. Steroid sex hormones play crucial roles in prostate and breast cancer. Therefore, we investigated the questions of whether and how steroid sex hormones regulate matriptase activation in these cancer cells. Treatment of cells with 17beta-estradiol had no effect on activation of matriptase in hormone-starved breast cancer cells, in part due to their high constitutive level of activated matriptase. In striking contrast, very low levels of activated matriptase were detected in hormone-starved lymph node prostatic adenocarcinoma (LNCaP) cells. Robust activation of matriptase was observed as early as 6 h after exposure of these cells to 5alpha-dihydrotestosterone (DHT). Activation of matriptase was closely followed by shedding of the activated matriptase with >90% of total activated matriptase present in the culture media 24 h after DHT treatment. Activated matriptase was shed in a complex with HAI-1 and may result from simultaneously proteolytic cleavages of both membrane-bound proteins. Latent matriptase and free HAI-1 were also shed into culture media. As a result of shedding, the cellular levels of matriptase and HAI-1 were significantly reduced 24 h after exposure to DHT. DHT-induced matriptase activation and shedding were significantly inhibited by the androgen antagonist bicalutamide, by the RNA transcription inhibitor actinomycin D, and by the protein synthesis inhibitor cycloheximide. These results suggest that in LNCaP cells, androgen induces matriptase activation via the androgen receptor, and requires transcription and protein synthesis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Dihidrotestosterona/farmacología , Glicoproteínas de Membrana/metabolismo , Neoplasias de la Próstata/metabolismo , Serina Endopeptidasas/metabolismo , Activación Enzimática/fisiología , Inducción Enzimática/fisiología , Estradiol/fisiología , Femenino , Humanos , Hidrólisis , Masculino , Proteínas Inhibidoras de Proteinasas Secretoras , Serina Endopeptidasas/biosíntesis , Células Tumorales Cultivadas
12.
Clin Exp Metastasis ; 21(6): 543-52, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15679052

RESUMEN

Recently, the tissue origin of MDA-MB-435 cell line has been the subject of considerable debate. In this study, we set out to determine whether MDA-MB-435-DTP cells shown to express melanoma-specific genes were identical to various other MDA-MB-435 cell stocks worldwide. CGH-microarray, genetic polymorphism genotyping, microsatellite fingerprint analysis and/or chromosomal number confirmed that the MDA-MB-435 cells maintained at the Lombardi Comprehensive Cancer Center (MDA-MB-435-LCC) are almost identical to the MDA-MB-435-DTP cells, and showed a very similar profile to those obtained from the same original source (MD Anderson Cancer Center) but maintained independently (MDA-MB-435-PMCC). Gene expression profile analysis confirmed common expression of genes among different MDA-MB-435-LCC cell stocks, and identified some unique gene products in MDA-MB-435-PMCC cells. RT-PCR analysis confirmed the expression of the melanoma marker tyrosinase across multiple MDA-MB-435 cell stocks. Collectively, our results show that the MDA-MB-435 cells used widely have identical origins to those that exhibit a melanoma-like gene expression signature, but exhibit a small degree of genotypic and phenotypic drift.


Asunto(s)
Neoplasias de la Mama/patología , Melanoma/patología , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas/patología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , ADN de Neoplasias/genética , Femenino , Expresión Génica , Humanos , Melanocitos/patología , Melanoma/genética , Melanoma/metabolismo , Repeticiones de Microsatélite , Proteínas de Neoplasias/metabolismo , Hibridación de Ácido Nucleico , Ploidias , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Células Tumorales Cultivadas/clasificación , Células Tumorales Cultivadas/metabolismo
13.
Hum Mol Genet ; 12(14): 1643-50, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12837688

RESUMEN

Theories predict that the long-term survival of duplicated genes requires their functional diversification, which can be accomplished by either subfunctionalization (the partitioning of ancestral functions among duplicates) or neofunctionalization (the acquisition of novel function). Here, we characterize the CDY-related mammalian gene family, focusing on three aspects of its evolution: gene copy number, tissue expression profile and amino acid sequence. We show that the progenitor of this gene family arose de novo in the mammalian ancestor via domain accretion. This progenitor later duplicated to generate CDYL and CDYL2, two autosomal genes found in all extant mammals. Prior to human-mouse divergence (and perhaps preceding the eutherian radiation), a processed CDYL transcript retroposed onto the Y chromosome to create CDY, the Y-linked member of the family. In the simian lineage, CDY was retained and subsequently amplified on the Y. In non-simian mammals, however, CDY appears to have been lost. The retention of the Y-linked CDY genes in simians spurred the process of subfunctionalization and possibly neofunctionalization. Subfunctionalization is evidenced by the observation that simian CDYL and CDYL2 retained their somatic housekeeping transcripts but lost the spermatogenic transcripts to the newly arisen CDY. Neo-functionalization is suggested by the rapid evolution of the CDY protein sequence. Thus, the CDY-related family offers an instructive example of how duplicated genes undergo functional diversification in both expression profile and protein sequence. It also supports the previously postulated notion that there is a tendency for spermatogenic functions to transfer from autosomes to the Y chromosome.


Asunto(s)
Dosificación de Gen , Familia de Multigenes , Proteínas Nucleares , Proteínas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , Perfilación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Filogenia , Primates/genética
14.
Transplantation ; 73(11): 1835-8, 2002 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12085010

RESUMEN

BACKGROUND: FK506-binding proteins (FKBP) are immunophilins that interact with the immunosuppressive drugs FK506 and rapamycin. Several FKBP family members such as FKBP12, FKBP12.6, and FKBP51 are expressed in T cells. It has been speculated that these FKBPs are possibly redundant in the immunosuppressant-induced T-cell inactivation. To determine the pharmacological relevance of multiple FKBP members in the immunosuppressant-induced T-cell inactivation, we have investigated the physiological responses of FKBP12-deficient and FKBP12.6-deficient mutant T cells to the immunosuppressive agent FK506. METHODS: FKBP12-deficient and FKBP12.6-deficient T cells were isolated from genetically engineered FKBP12-deficient and FKBP12.6-deficient mice, respectively. T-cell growth inhibitory assay was used to assess their responses to immunosuppressant FK506 treatments. RESULTS: We found that growth inhibition induced by FK506 is abolished in FKBP12-deficient cells but not in FKBP12.6-deficient cells. CONCLUSIONS: FKBP12 is the only FKBP family member that plays a key role in immunosuppressant-mediated immunosuppression.


Asunto(s)
Inmunosupresores/farmacología , Linfocitos T/inmunología , Proteína 1A de Unión a Tacrolimus/genética , Proteína 1A de Unión a Tacrolimus/inmunología , Tacrolimus/farmacología , Animales , Antígenos CD28/inmunología , Complejo CD3/inmunología , División Celular/efectos de los fármacos , División Celular/inmunología , Ciclosporina/farmacología , Relación Dosis-Respuesta a Droga , Ratones , Ratones Noqueados , Linfocitos T/efectos de los fármacos , Proteína 1A de Unión a Tacrolimus/metabolismo
15.
Proc Natl Acad Sci U S A ; 99(13): 8707-12, 2002 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-12072557

RESUMEN

During spermiogenesis (the maturation of spermatids into spermatozoa) in many vertebrate species, protamines replace histones to become the primary DNA-packaging protein. It has long been thought that this process is facilitated by the hyperacetylation of histone H4. However, the responsible histone acetyltransferase enzymes are yet to be identified. CDY is a human Y-chromosomal gene family expressed exclusively in the testis and implicated in male infertility. Its mouse homolog Cdyl, which is autosomal, is expressed abundantly in the testis. Proteins encoded by CDY and its homologs bear the "chromodomain," a motif implicated in chromatin binding. Here, we show that (i) human CDY and mouse CDYL proteins exhibit histone acetyltransferase activity in vitro, with a strong preference for histone H4; (ii) expression of human CDY and mouse Cdyl genes during spermatogenesis correlates with the occurrence of H4 hyperacetylation; and (iii) CDY and CDYL proteins are localized to the nuclei of maturing spermatids where H4 hyperacetylation takes place. Taken together, these data link human CDY and mouse CDYL to the histone-to-protamine transition in mammalian spermiogenesis. This link offers a plausible mechanism to account for spermatogenic failure in patients bearing deletions of the CDY genes.


Asunto(s)
Acetiltransferasas/fisiología , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Espermatogénesis/fisiología , Acetilación , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Histona Acetiltransferasas , Histonas/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas/genética , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Espermátides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...