Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 21(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37504924

RESUMEN

R-phycoerythrin (R-PE) can be enzymatically extracted from red seaweeds such as Palmaria palmata. This pigment has numerous applications and is notably known as an antioxidant, antitumoral or anti-inflammatory agent. Enzymes secreted by P. palmata associated fungal strains were assumed to be efficient and adapted for R-PE extraction from this macroalga. The aim of the present study was to quantify both xylanolytic and cellulolytic activities of enzymatic extracts obtained from six Palmaria palmata derived fungal strains. Degradation of P. palmata biomass by fungal enzymatic extracts was also investigated, focused on soluble protein and R-PE extraction. Enzymatic extracts were obtained by solid state fermentation. Macroalgal degradation abilities were evaluated by measuring reducing sugar release using DNS assays. Soluble proteins and R-PE recovery yields were evaluated through bicinchoninic acid and spectrophotometric assays, respectively. Various enzymatic activities were obtained according to fungal isolates up to 978 U/mL for xylanase and 50 U/mL for cellulase. Enzymatic extract allowed high degrading abilities, with four of the six fungal strains assessed exhibiting at least equal results as the commercial enzymes for the reducing sugar release. Similarly, all six strains allowed the same soluble protein extraction yield and four of them led to an improvement of R-PE extraction. R-PE extraction from P. palamata using marine fungal enzymes appeared particularly promising. To the best of our knowledge, this study is the first on the use of enzymes of P. palmata associated fungi in the degradation of its own biomass for biomolecules recovery.


Asunto(s)
Rhodophyta , Algas Marinas , Algas Marinas/metabolismo , Ficoeritrina/metabolismo , Rhodophyta/metabolismo , Verduras , Extractos Vegetales/metabolismo , Azúcares/metabolismo
2.
Sci Total Environ ; 709: 135997, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31887500

RESUMEN

The increase in extreme events such as storms is one of the major threats that coastal ecosystems will have to face in the near future. In such a context, both maturation and ecological successions processes remain at the core of ecology to better anticipate the changes to ecosystem biodiversity and functions facing environmental stressors. However, these concepts are mainly approached through closed experimental studies that oversimplify the mechanisms. A survey was carried out on a 'natural' and open ecosystem subjected to an acute disturbance, i.e. a marine submersion of freshwater drained marshes, occurring after a storm. Plankton biomass, production and taxonomic/functional phytoplankton diversity were followed weekly at four stations over 2 months. Most of the stations were disrupted by this acute disturbance and displayed gradual growth and development, as described in the classical maturation process. The main differences between stations were attributed to the heterogeneity of the communities before the storm, the intensity of the disturbance and the different human actions performed to recover the freshwater environment. The concept of 'ecological resilience' was thus better suited than 'engineering resilience' for such open systems facing constant fluctuations in environmental drivers. With regard to ecological succession, the more impacted stations were marked by a significant change in taxonomic beta-diversity, with numerous stochastic processes, due to taxa dispersion. They first exhibited a convergence in functional traits due to the increase in nutrient availability drained from the catchment basin and then an increase in divergence when nutrients became limited.


Asunto(s)
Plancton , Humedales , Biodiversidad , Ecosistema , Agua Dulce
3.
PLoS One ; 13(5): e0197093, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29758047

RESUMEN

The use of remote sensing techniques allows monitoring of photosynthesis at the ecosystem level and improves our knowledge of plant primary productivity. The main objective of the current study was to develop a remote sensing based method to measure microphytobenthos (MPB) primary production from intertidal mudflats. This was achieved by coupling hyperspectral radiometry (reflectance, ρ and second derivative, δδ) and PAM-fluorometry (non-sequential light curves, NSLC) measurements. The latter allowed the estimation of primary production using a light use efficiency parameter (LUE) and electron transport rates (ETR) whereas ρ allowed to estimate pigment composition and optical absorption cross-section (a*). Five MPB species representative of the main growth forms: epipelic (benthic motile), epipsammic (benthic motile and non motile) and tychoplanktonic (temporarily resuspended in the water column) were submitted to increasing light intensities from dark to 1950 µmol photons.m-2.s-1. Different fluorescence patterns were observed for the three growth-forms and were linked to their xanthophyll cycle (de-epoxydation state). After spectral reflectance measurements, a* was retrieved using a radiative transfer model and several radiometric indices were tested for their capacity to predict LUE and ETR measured by PAM-fluorometry. Only one radiometric index was not species or growth-form specific, i.e. δδ496/508. This index was named MPBLUE and could be used to predict LUE and ETR. The applicability of this index was tested with simulated bands of a wide variety of hyperspectral sensors at spectral resolutions between 3 and 15 nm of Full Width at Half Maximum (FWHM).


Asunto(s)
Biomasa , Diatomeas , Fluorometría/métodos , Diatomeas/química , Diatomeas/crecimiento & desarrollo
4.
Environ Microbiol ; 17(10): 3662-77, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25471657

RESUMEN

Although estuarine microphytobenthos (MPB) is frequently exposed to excessive light and temperature conditions, little is known on their interactive effects on MPB primary productivity. Laboratory and in situ experiments were combined to investigate the short-term joint effects of high light (HL) and high temperature (37 °C versus 27 °C) on the operating efficiency of photoprotective processes [vertical migration versus non-photochemical quenching (NPQ)] exhibited by natural benthic diatom communities from two intertidal flats in France (FR) and Portugal (PT). A clear latitudinal pattern was observed, with PT biofilms being more resistant to HL stress, regardless the effect of temperature, and displaying a lower relative contribution of vertical migration to photoprotection and a stronger NPQ in situ. However, higher temperature leads to comparable effects, with photoinhibition increasing to about three times (i.e. from 3% to 10% and from 8% to 22% in PT and FR sites respectively). By using a number of methodological novelties in MPB research (lipid peroxidation quantification, Lhcx proteins immunodetection), this study brings a physiological basis to the previously reported depression of MPB photosynthetic productivity in summer. They emphasize the joint role of temperature and light in limiting, at least transiently (i.e. during emersion), MPB photosynthetic activity in situ.


Asunto(s)
Aclimatación , Biopelículas/crecimiento & desarrollo , Diatomeas/metabolismo , Microalgas/metabolismo , Fotosíntesis/fisiología , Estrés Fisiológico/fisiología , Océano Atlántico , Ambiente , Estuarios , Francia , Sedimentos Geológicos/química , Luz , Microalgas/fisiología , Portugal , Estaciones del Año , Temperatura
5.
ISME J ; 9(1): 32-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25003964

RESUMEN

In intertidal marine sediments, characterized by rapidly fluctuating and often extreme light conditions, primary production is frequently dominated by diatoms. We performed a comparative analysis of photophysiological traits in 15 marine benthic diatom species belonging to the four major morphological growth forms (epipelon (EPL), motile epipsammon (EPM-M) and non-motile epipsammon (EPM-NM) and tychoplankton (TYCHO)) found in these sediments. Our analyses revealed a clear relationship between growth form and photoprotective capacity, and identified fast regulatory physiological photoprotective traits (that is, non-photochemical quenching (NPQ) and the xanthophyll cycle (XC)) as key traits defining the functional light response of these diatoms. EPM-NM and motile EPL showed the highest and lowest NPQ, respectively, with EPM-M showing intermediate values. Like EPL, TYCHO had low NPQ, irrespective of whether they were grown in benthic or planktonic conditions, reflecting an adaptation to a low light environment. Our results thus provide the first experimental evidence for the existence of a trade-off between behavioural (motility) and physiological photoprotective mechanisms (NPQ and the XC) in the four major intertidal benthic diatoms growth forms using unialgal cultures. Remarkably, although motility is restricted to the raphid pennate diatom clade, raphid pennate species, which have adopted a non-motile epipsammic or a tychoplanktonic life style, display the physiological photoprotective response typical of these growth forms. This observation underscores the importance of growth form and not phylogenetic relatedness as the prime determinant shaping the physiological photoprotective capacity of benthic diatoms.


Asunto(s)
Diatomeas/metabolismo , Aclimatación , Diatomeas/crecimiento & desarrollo , Luz , Fotosíntesis/fisiología , Filogenia , Fitoplancton/crecimiento & desarrollo , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA