Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919441

RESUMEN

Carbon nanotubes (CNTs) can be spun into fibers as potential lightweight replacements for copper in electrical current transmission since lightweight CNT fibers weigh <1/6th that of an equivalently dimensioned copper wire. Experimentally, it has been shown that the electrical resistance of CNT fibers increases with longitudinal strain; however, although fibers may be under radial strain when they are compressed during crimping at contacts for use in electrical current transport, there has been no study of this relationship. Herein, we apply radial stress at the contact to a CNT fiber on both the nano- and macro-scale and measure the changes in fiber and contact resistance. We observed an increase in resistance with increasing pressure on the nanoscale as well as initially on the macro scale, which we attribute to the decreasing of axial CNT…CNT contacts. On the macro scale, the resistance then decreases with increased pressure, which we attribute to improved radial contact due to the closing of voids within the fiber bundle. X-ray photoelectron spectroscopy (XPS) and UV photoelectron spectroscopy (UPS) show that applied pressure on the fiber can damage the π-π bonding, which could also contribute to the increased resistance. As such, care must be taken when applying radial strain on CNT fibers in applications, including crimping for electrical contacts, lest they operate in an unfavorable regime with worse electrical performance.

2.
Nanoscale Adv ; 3(3): 643-646, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36133837

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) show an oscillation in electrical resistance (from I-V measurements) during mechanical distortion in which peak separation is inversely correlated with the diameter of the MWCNTs. These results provide the first experimental support of the theoretical prediction that distortion causes Van Hove singularities and Dirac cones in MWCNTs to misalign and cause the opening of the band gap, and suggest that when fabricating contacts for CNTs for device applications, the pressure caused by the contact deposition method must be taken into account for manufacturing devices with consistent properties.

3.
Nanotechnology ; 31(50): 505705, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33021237

RESUMEN

Metal oxide semiconductors such as ZnO have attracted much scientific attention due their material and electrical properties and their ability to form nanostructures that can be used in numerous devices. However, ZnO is naturally n-type and tailoring its electrical properties towards intrinsic or p-type in order to optimise device operation have proved difficult. Here, we present an x-ray photon-electron spectroscopy and photoluminescence study of ZnO nanowires that have been treated with different argon bombardment treatments including with monoatomic beams and cluster beams of 500 atoms and 2000 atoms with acceleration volte of 0.5 keV-20 keV. We observed that argon bombardment can remove surface contamination which will improve contact resistance and consistency. We also observed that using higher intensity argon bombardment stripped the surface for nanowires causing a reduction in defects and surface OH- groups both of which are possible causes of the n-type nature and observed a shift in the valance band edge suggest a shift to a more p-type nature. These results indicate a simple method for tailoring the electrical characteristic of ZnO.

4.
Nano Lett ; 19(8): 4861-4865, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31265785

RESUMEN

Measurement of the angular and overlap dependence of the conduction between two identical carbon nanotubes (CNTs), with the same diameter and chirality, has only been possible through theoretical calculations; however, our observation of increased resistance adjacent to the junction between two CNTs facilitates such measurements. Since electrical resistance was found to increase with increased diameter ratio, applying 10 V to one of dissimilar diameter CNTs results in cleavage at the junction. Manipulation of the resulting identical CNTs (created by cutting a single CNT) allows for the direct measurement of the angular and parallel overlap conduction. Angular (13° < θ < 63°) dependence shows two minima (22° and 44°) and a maximum at 30°, and conduction between parallel CNTs increases with overall tip separation but shows a sinusoidal relationship with contact length, consistent with the concept of atomic scale registry.

5.
Nanotechnology ; 29(16): 165701, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29425112

RESUMEN

ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.

6.
Nano Lett ; 18(2): 695-700, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29257695

RESUMEN

Two-point probe and Raman spectroscopy have been used to investigate the effects of vacuum annealing and argon bombardment on the conduction characteristics of multiwalled carbon nanotubes (MWCNTs). Surface contamination has a large effect on the two-point probe conductivity measurements which results in inconsistent and nonreproducible contacts. The electric field under the contacts is enhanced which results in overlapping depletion regions when probe separations are small (<4 µm) causing very high resistances. Annealing at 200 and 500 °C reduced the surface contamination on the MWCNT, but high resistance contacts still did not allow intrinsic conductivity measurements of the MWCNT. The high resistance measured due to the overlapping depletion regions was not observed after annealing to 500 °C. Argon bombardment reduced the surface contamination more than vacuum annealing at 500 °C but caused a slight increase in the defects concentration, enabling the resistivity of the MWCNT to be calculated, which is found to be dependent on the CNT diameter. The observations have significant implications for future CNT-based devices.

7.
J Phys Condens Matter ; 29(38): 384001, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28678024

RESUMEN

Multi-probe instruments based on scanning tunnelling microscopy (STM) are becoming increasingly common for their ability to perform nano- to atomic-scale investigations of nanostructures, surfaces and in situ reactions. A common configuration is the four-probe STM often coupled with in situ scanning electron microscopy (SEM) that allows precise positioning of the probes onto surfaces and nanostructures enabling electrical and scanning experiments to be performed on highly localised regions of the sample. In this paper, we assess the sensitivity of four-probe STM for in-line resistivity measurements of the bulk ZnO surface. The measurements allow comparisons to established models that are used to relate light plasma treatments (O and H) of the surfaces to the resistivity measurements. The results are correlated to x-ray photoelectron spectroscopy (XPS) and show that four-probe STM can detect changes in surface and bulk conduction mechanisms that are beyond conventional monochromatic XPS.

8.
Nanotechnology ; 28(8): 085301, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28045379

RESUMEN

Ti is often used to form an initial Ohmic interface between ZnO and Au due to its low work function, and the TiO2/ZnO heterojunction is also of great importance for many practical applications of nanoparticles. Here, Ti has been controllably deposited onto hydrothermally grown ZnO nanowires and the formation of metal-semiconductor contact has been investigated using x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and scanning electron microscopy. XPS results showed that that the Ti initially reacts with surface oxygen species to form TiO2, and further deposition results in the formation of oxides with oxidation state numbers lower than four, and eventually metallic Ti on top of the TiO2. The formation of TiC was also observed. XPS showed that the onset of metallic Ti coincided with a Zn 3p core level shift to lower binding energy, indicating upwards band bending and the formation of a rectifying contact. Annealing caused a near-complete conversion of the metallic Ti to TiO2 and caused the Zn 3p to shift back to its original higher binding energy, resulting in downwards band bending and a more Ohmic contact. PL measurements showed that the optical properties of the nanowires are not affected by the contact formation.

9.
Nanoscale Res Lett ; 10(1): 368, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26383543

RESUMEN

ZnO nanosheets are a relatively new form of nanostructure and have demonstrated potential as gas-sensing devices and dye sensitised solar cells. For integration into other devices, and when used as gas sensors, the nanosheets are often heated. Here we study the effect of vacuum annealing on the electrical transport properties of ZnO nanosheets in order to understand the role of heating in device fabrication. A low cost, mass production method has been used for synthesis and characterisation is achieved using scanning electron microscopy (SEM), photoluminescence (PL), auger electron spectroscopy (AES) and nanoscale two-point probe. Before annealing, the measured nanosheet resistance displayed a non-linear increase with probe separation, attributed to surface contamination. Annealing to 300 °C removed this contamination giving a resistance drop, linear probe spacing dependence, increased grain size and a reduction in the number of n-type defects. Further annealing to 500 °C caused the n-type defect concentration to reduce further with a corresponding increase in nanosheet resistance not compensated by any further sintering. At 700 °C, the nanosheets partially disintegrated and the resistance increased and became less linear with probe separation. These effects need to be taken into account when using ZnO nanosheets in devices that require an annealing stage during fabrication or heating during use.

10.
Nanotechnology ; 26(41): 415701, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26390967

RESUMEN

ZnO nanorods are used in devices including field effects transistors, piezoelectric transducers, optoelectronics and gas sensors. However, for efficient and reproducible device operation and contact behaviour, surface contaminants must be removed or controlled. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanorods allowing intrinsic surface measurements through a cross section of the material. Photoluminescence finds that the defect distribution is higher at the near-surface, falling away in to the bulk. Contacts to the n-type defect-rich surface are near-Ohmic, whereas stripping away the surface layers allows more rectifying Schottky contacts to be formed. The ability to select the contact type to ZnO nanorods offers a new way to customize device behaviour.

11.
Anal Biochem ; 374(2): 358-65, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18062912

RESUMEN

We employ a particular form of two-dimensional infrared four-wave mixing (2DIR FWM) as a vibrational spectroscopic tool to quantify the amino acid content of a number of peptides. Vibrational features corresponding to ring modes of the aromatic groups of phenylalanine (Phe) and tyrosine (Tyr), as well as a methylene mode that is used as an internal reference, are identified. We show that the ratios of the integrated intensities, and the amplitudes, of the aromatic peaks of Phe and Tyr relative to the methylene integrated intensity, and amplitude, are proportional to the actual ratio of Phe and Tyr to CH(2) in the samples within a precision of +/-12.5%. This precision is shown to be sufficient to use this form of 2DIR spectroscopy as a possible proteins fingerprinting tool.


Asunto(s)
Óptica y Fotónica , Mapeo Peptídico/métodos , Espectrofotometría Infrarroja/métodos , Aminoácidos/análisis , Sensibilidad y Especificidad
12.
J Chem Phys ; 127(11): 114513, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17887863

RESUMEN

We show that it is possible to both directly measure and directly calculate Fermi resonance couplings in benzene. The measurement method used was a particular form of two-dimensional infrared spectroscopy (2D-IR) known as doubly vibrationally enhanced four wave mixing. By using different pulse orderings, vibrational cross peaks could be measured either purely at the frequencies of the base vibrational states or split by the coupling energy. This capability is a feature currently unique to this particular form of 2D-IR and can be helpful in the decongestion of complex spectra. Five cross peaks of the ring breathing mode nu13 with a range of combination bands were observed spanning a region of 1500-4550 cm(-1). The coupling energy was measured for two dominant states of the nu13+nu16 Fermi resonance tetrad. Dephasing rates were measured in the time domain for nu13 and the two (nu13+nu16) Fermi resonance states. The electronic and mechanical vibrational anharmonic coefficients were calculated to second and third orders, respectively, giving information on relative intensities of the cross peaks and enabling the Fermi resonance states of the combination band nu13+nu16 at 3050-3100 cm(-1) to be calculated. The excellent agreement between calculated and measured spectral intensities and line shapes suggests that assignment of spectral features from ab initio calculations is both viable and practicable for this form of spectroscopy.


Asunto(s)
Química Física/métodos , Espectrofotometría Infrarroja/métodos , Algoritmos , Benceno/química , Modelos Estadísticos , Modelos Teóricos , Conformación Molecular , Distribución Normal , Fotones , Espectrofotometría/métodos , Espectrometría Raman , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...