Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1268243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606299

RESUMEN

Introduction: Crohn's disease (CD) is a chronic inflammatory bowel disease, of which the etiology involves genetic, environmental and microbial factors. Adherent-invasive Escherichia coli (AIEC) and polymorphisms in autophagy-related genes have been implicated in CD etiology. Autophagy is a key process for the maintenance of cellular homeostasis, which allows the degradation of damaged cytoplasmic components and pathogens via lysosome. We have shown that a functional autophagy is necessary for AIEC clearance. Here, we aimed at identifying the autophagy receptor(s) responsible to target AIEC to autophagy for degradation. Methods: The levels of autophagy receptors p62, NDP52, NBR1, TAX1BP1 and Optineurin were knocked down in human intestinal epithelial cells T84 using siRNAs. The NDP52 knock-out (KO) and p62 KO HeLa cells, as well as NDP52 KO HeLa cells expressing the wild-type NDP52 or the mutated NDP52Val248Ala protein were used. Results and discussion: We showed that, among the tested autophagy receptors (p62, NDP52, NBR1, TAX1BP1 and Optineurin), diminished expression of p62 or NDP52 increased the number of the clinical AIEC LF82 strain inside epithelial cells. This was associated with increased pro-inflammatory cytokine production. Moreover, p62 or NDP52 directly colocalized with AIEC LF82 and LC3, an autophagy marker. As the NDP52Val248Ala polymorphism has been associated with increased CD susceptibility, we investigated its impact on AIEC control. However, in HeLa cell and under our experimental condition, no effect of this polymorphism neither on AIEC LF82 intracellular number nor on pro-inflammatory cytokine production was observed. Together, our results suggest that p62 and NDP52 act as autophagy receptors for AIEC recognition, controlling AIEC intracellular replication and inflammation.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Humanos , Células HeLa , Mucosa Intestinal/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Autofagia/fisiología , Citocinas/metabolismo , Adhesión Bacteriana
3.
Gut Microbes ; 16(1): 2310215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374654

RESUMEN

Human colorectal cancers (CRCs) are readily colonized by colibactin-producing E. coli (CoPEC). CoPEC induces DNA double-strand breaks, DNA mutations, genomic instability, and cellular senescence. Infected cells produce a senescence-associated secretory phenotype (SASP), which is involved in the increase in tumorigenesis observed in CRC mouse models infected with CoPEC. This study investigated whether CoPEC, and the SASP derived from CoPEC-infected cells, impacted chemotherapeutic resistance. Human intestinal epithelial cells were infected with the CoPEC clinical 11G5 strain or with its isogenic mutant, which is unable to produce colibactin. Chemotherapeutic resistance was assessed in vitro and in a xenograft mouse model. Expressions of cancer stem cell (CSC) markers in infected cells were investigated. Data were validated using a CRC mouse model and human clinical samples. Both 11G5-infected cells, and uninfected cells incubated with the SASP produced by 11G5-infected cells exhibited an increased resistance to chemotherapeutic drugs in vitro and in vivo. This finding correlated with the induction of the epithelial to mesenchymal transition (EMT), which led to the emergence of cells exhibiting CSC features. They grew on ultra-low attachment plates, formed colonies in soft agar, and overexpressed several CSC markers (e.g. CD133, OCT-3/4, and NANOG). In agreement with these results, murine and human CRC biopsies colonized with CoPEC exhibited higher expression levels of OCT-3/4 and NANOG than biopsies devoid of CoPEC. Conclusion: CoPEC might aggravate CRCs by inducing the emergence of cancer stem cells that are highly resistant to chemotherapy.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Péptidos , Policétidos , Humanos , Ratones , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Transición Epitelial-Mesenquimal , Mutágenos/metabolismo , Policétidos/farmacología , Policétidos/metabolismo , Modelos Animales de Enfermedad , Células Madre Neoplásicas/metabolismo
4.
Gut Microbes ; 16(1): 2320291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38417029

RESUMEN

Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Péptidos , Policétidos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Microambiente Tumoral , Resistencia a Antineoplásicos , Mutágenos/metabolismo , Recurrencia Local de Neoplasia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Policétidos/metabolismo , Lípidos
5.
Med Sci Sports Exerc ; 56(5): 839-850, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38233990

RESUMEN

PURPOSE: High-intensity interval training (HIIT) can efficiently decrease total and (intra-)abdominal fat mass (FM); however, the effects of running versus cycling HIIT programs on FM reduction have not been compared yet. In addition, the link between HIIT-induced FM reduction and gut microbiota must be better investigated. The aim of this study was to compare the effects of two 12-wk HIIT isoenergetic programs (cycling vs running) on body composition and fecal microbiota composition in nondieting men with overweight or obesity. METHODS: Sixteen men (age, 54.2 ± 9.6 yr; body mass index, 29.9 ± 2.3 kg·m -2 ) were randomly assigned to the HIIT-BIKE (10 × 45 s at 80%-85% of maximal heart rate, 90-s active recovery) or HIIT-RUN (9 × 45 s at 80%-85% of maximal heart rate, 90-s active recovery) group (3 times per week). Dual-energy x-ray absorptiometry was used to determine body composition. Preintervention and postintervention fecal microbiota composition was analyzed by 16S rRNA gene sequencing, and diet was controlled. RESULTS: Overall, body weight, and abdominal and visceral FM decreased over time ( P < 0.05). No difference was observed for weight, total body FM, and visceral FM between groups (% change). Conversely, abdominal FM loss was greater in the HIIT-RUN group (-16.1% vs -8.3%; P = 0.050). The α-diversity of gut microbiota did not vary between baseline and intervention end and between groups, but was associated with abdominal FM change ( r = -0.6; P = 0.02). The baseline microbiota profile and composition changes were correlated with total and abdominal/visceral FM losses. CONCLUSIONS: Both cycling and running isoenergetic HIIT programs improved body composition in men with overweight/obesity. Baseline intestinal microbiota composition and its postintervention variations were correlated with FM reduction, strengthening the possible link between these parameters. The mechanisms underlying the greater abdominal FM loss in the HIIT-RUN group require additional investigations.


Asunto(s)
Microbioma Gastrointestinal , Entrenamiento de Intervalos de Alta Intensidad , Carrera , Adulto , Humanos , Masculino , Persona de Mediana Edad , Ciclismo , Composición Corporal/fisiología , Obesidad/terapia , Sobrepeso/terapia , ARN Ribosómico 16S
6.
Part Fibre Toxicol ; 20(1): 45, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996842

RESUMEN

BACKGROUND: Perinatal exposure to titanium dioxide (TiO2), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel disease (IBD) later in life. Here, we investigate the impact of perinatal foodborne TiO2 exposure on the intestinal mucosal function and the susceptibility to develop IBD-associated colitis. Pregnant and lactating mother mice were exposed to TiO2 until pups weaning and the gut microbiota and intestinal barrier function of their offspring was assessed at day 30 post-birth (weaning) and at adult age (50 days). Epigenetic marks was studied by DNA methylation profile measuring the level of 5-methyl-2'-deoxycytosine (5-Me-dC) in DNA from colic epithelial cells. The susceptibility to develop IBD has been monitored using dextran-sulfate sodium (DSS)-induced colitis model. Germ-free mice were used to define whether microbial transfer influence the mucosal homeostasis and subsequent exacerbation of DSS-induced colitis. RESULTS: In pregnant and lactating mice, foodborne TiO2 was able to translocate across the host barriers including gut, placenta and mammary gland to reach embryos and pups, respectively. This passage modified the chemical element composition of foetus, and spleen and liver of mothers and their offspring. We showed that perinatal exposure to TiO2 early in life alters the gut microbiota composition, increases the intestinal epithelial permeability and enhances the colonic cytokines and myosin light chain kinase expression. Moreover, perinatal exposure to TiO2 also modifies the abilities of intestinal stem cells to survive, grow and generate a functional epithelium. Maternal TiO2 exposure increases the susceptibility of offspring mice to develop severe DSS-induced colitis later in life. Finally, transfer of TiO2-induced microbiota dysbiosis to pregnant germ-free mice affects the homeostasis of the intestinal mucosal barrier early in life and confers an increased susceptibility to develop colitis in adult offspring. CONCLUSIONS: Our findings indicate that foodborne TiO2 consumption during the perinatal period has negative long-lasting consequences on the development of the intestinal mucosal barrier toward higher colitis susceptibility. This demonstrates to which extent environmental factors influence the microbial-host interplay and impact the long-term mucosal homeostasis.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Embarazo , Femenino , Animales , Ratones , Disbiosis/inducido químicamente , Lactancia , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
BMJ Open ; 13(8): e073776, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37541750

RESUMEN

INTRODUCTION: Aseptic abscess (AA) syndrome is a rare disease whose pathophysiology is unknown. It is often associated with inflammatory bowel disease and characterised by sterile inflammation with collections of neutrophils affecting several organs, especially the spleen. Microbiota are known to influence local and systemic immune responses, and both gut and oral microbiota perturbations have been reported in diseases associated with AA syndrome. However, interactions between these factors have never been studied in AA syndrome. The purpose of this translational case-control study (ABSCESSBIOT) is to investigate gut and/or oral microbiota in patients with AA syndrome compared with healthy controls. Moreover, microbiota associated metabolites quantification and Treg/Th17 balance characterisation will give a mechanistic insight on how microbiota may be involved in the pathophysiology of AA syndrome. METHODS AND ANALYSIS: This French multicentre case-control study including 30 French centres (University hospital or regional hospital) aims to prospectively enrol 30 patients with AA syndrome with 30 matched controls and to analyse microbiota profiling (in stools and saliva), microbial metabolites quantification in stools and circulating CD4+ T cell populations. ETHICS AND DISSEMINATION: This study protocol was reviewed and approved by an independent French regional review board (n° 2017-A03499-44, Comité de Protection des Personnes Ile de France 1) on 10 October 2022, and declared to the competent French authority (Agence Nationale de Sécurité du Médicament et des produits de santé, France). Oral and written informed consent will be obtained from each included patient and the control participant. Study results will be reported to the scientific community at conferences and in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER: Clinical Trials web-based platform (NCT05537909).


Asunto(s)
Absceso , Microbiota , Humanos , Estudios de Casos y Controles , Francia/epidemiología , Hospitales Universitarios , Estudios Multicéntricos como Asunto
8.
Gut Microbes ; 15(1): 2229569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37417545

RESUMEN

Colorectal cancer (CRC) patients are frequently colonized by colibactin-producing Escherichia coli (CoPEC) (>40%), which enhances tumorigenesis in mouse models of CRC. We observed that 50% of CoPEC also contains the cnf1 gene, which encodes cytotoxic necrotizing factor-1 (CNF1), an enhancer of the eukaryotic cell cycle. The impact of its co-occurrence with colibactin (Clb) has not yet been investigated. We evaluated the impact of CNF1 on colorectal tumorigenesis using human colonic epithelial HT-29 cells and CRC-susceptible ApcMin/+ mice inoculated with the CoPEC 21F8 clinical strain (Clb+Cnf+) or 21F8 isogenic mutants (Clb+Cnf-, Clb-Cnf+ and Clb-Cnf-). Infection with the Clb+Cnf- strain induced higher levels of inflammatory cytokines and senescence markers both in vitro and in vivo compared to those induced by infection with the Clb+Cnf+ strain. In contrast, the Clb+Cnf- and Clb+Cnf+ strains generated similar levels of DNA damage in HT-29 cells and in colonic murine tissues. Furthermore, the ApcMin/+ mice inoculated with the Clb+Cnf- strain developed significantly more tumors than the mice inoculated with the Clb+Cnf+ strain or the isogenic mutants, and the composition of their microbiota was changed. Finally, rectal administration of the CNF1 protein in ApcMin/+ mice inoculated with the Clb+Cnf- strain significantly decreased tumorigenesis and inflammation. Overall, this study provides evidence that CNF1 decreases the carcinogenic effects of CoPEC in ApcMin/+ mice by decreasing CoPEC-induced cellular senescence and inflammation.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Ratones , Humanos , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colon , Carcinogénesis , Transformación Celular Neoplásica , Inflamación
9.
Clin Exp Rheumatol ; 41(10): 2093-2104, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37382445

RESUMEN

The aim of this review was to describe the changes in the microbiota of patients with Behçet's disease (BD) and the mechanisms involved in the relationship between the microbiome and immunity in BD. A systematic search for relevant articles was made on PubMed and the Cochrane Library database using the following terms: "microbiota AND Behçet's disease" or "microbiome AND Behçet's disease". Sixteen articles were included in a qualitative synthesis. This systematic review on the microbiome and Behçet's disease underlines the presence of gut dysbiosis in BD patients. This dysbiosis is marked by (i) a decrease in butyrate-producing bacteria, which could affect T cell differentiation and epigenetic regulation of immune-related genes, (ii) a modification of tryptophan-metabolising bacteria, which could be linked to dysregulated IL-22 secretion, and (iii) a decrease in bacteria known to have anti-inflammatory properties. Regarding oral microbiota, this review underlines the possible role of Streptococcus sanguinis through molecular mimicry and NETosis. Clinical studies of BD have shown that (i) need for dentistry is associated with a more severe course in BD, and (ii) antibiotic-supplemented mouthwash reduces pain and ulcers. Fecal transplantation of BD patients' microbiota into mouse models led to decreased SCFA production, neutrophil activation, and Th1/Th17 responses.Recipient mice showed exacerbated experimental autoimmune uveitis (EAU) and experimental autoimmune encephalomyelitis (EAE). In Herpes Virus Simplex-1 (HSV-1) infected mice mimicking BD, administration of butyrateproducing bacteria improved symptoms and immune variables. The microbiome may thus be involved in BD through immunity regulation and epigenetic modifications.


Asunto(s)
Síndrome de Behçet , Microbiota , Uveítis , Humanos , Animales , Ratones , Síndrome de Behçet/diagnóstico , Disbiosis , Epigénesis Genética , Bacterias
10.
Front Microbiol ; 14: 1031997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910191

RESUMEN

Background and aim: Adherent-invasive E. coli (AIEC) has been identified as a pathobiont associated with Crohn's disease (CD), that prefers to grow in inflammatory conditions. Although the colonization by AIEC is implicated in the progression of the disease and exacerbates inflammation in murine colitis models, the recognition and response of host immunity to AIEC remains elusive. Methods: Antibiotic treated female C57BL/6 mice were inoculated by commensal E. coli and LF82 AIEC strains. Luminal-IgA fractions were prepared from feces and their binding to AIEC and other strains was assessed to confirm specificity. IgA binding to isogenic mutant strains was performed to identify the functional molecules that are recognized by AIEC specific IgA. The effect of IgA on epithelial invasion of LF82 strain was confirmed using in vitro invasion assay and in vivo colonization of the colonic epithelium. Results: Persistent colonization by AIEC LF82 induced secretion of luminal IgA, while commensal E. coli strain did not. Induced anti-LF82 IgA showed specific binding to other AIEC strains but not to the commensal, non-AIEC E. coli strains. Induced IgA showed decreased binding to LF82 strains with mutated adhesin and outer membrane proteins which are involved in AIEC - epithelial cell interaction. Consistently, LF82-specific IgA limited the adhesion and invasion of LF82 in cultured epithelial cells, which seems to be required for the elimination in the colonic epithelium in mice. Conclusion: These results demonstrate that host immunity selectively recognizes pathobiont E. coli, such as AIEC, and develop specific IgA. The induced IgA specific to pathobiont E. coli, in turn, contributes to preventing the pathobionts from accessing the epithelium.

12.
Microbiome ; 11(1): 12, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670449

RESUMEN

BACKGROUND: The plasmid-mediated resistance gene mcr-1 confers colistin resistance in Escherichia coli and paves the way for the evolution to pan-drug resistance. We investigated the impact of mcr-1 in gut colonization in the absence of antibiotics using isogenic E. coli strains transformed with a plasmid encoding or devoid of mcr-1. RESULTS: In gnotobiotic and conventional mice, mcr-1 significantly enhanced intestinal anchoring of E. coli but impaired their lethal effect. This improvement of intestinal fitness was associated with a downregulation of intestinal inflammatory markers and the preservation of intestinal microbiota composition. The mcr-1 gene mediated a cross-resistance to antimicrobial peptides secreted by the microbiota and intestinal epithelial cells (IECs), enhanced E. coli adhesion to IECs, and decreased the proinflammatory activity of both E. coli and its lipopolysaccharides. CONCLUSION: Overall, mcr-1 changed multiple facets of bacterial behaviour and appeared as a factor enhancing commensal lifestyle and persistence in the gut even in the absence of antibiotics. Video Abstract.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Ratones , Escherichia coli/genética , Simbiosis , Proteínas de Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Infecciones por Escherichia coli/microbiología , Pruebas de Sensibilidad Microbiana
13.
Gut ; 72(1): 39-48, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35361684

RESUMEN

OBJECTIVE: We used the postoperative recurrence model to better understand the role of adherent and invasive Escherichia coli (AIEC) bacteria in Crohn's disease (CD), taking advantage of a well-characterised postoperative cohort. DESIGN: From a prospective, multicentre cohort of operated patients with CD, AIEC identification was performed within the surgical specimen (M0) (N=181 patients) and the neoterminal ileum (n=119 patients/181) during colonoscopy performed 6 months after surgery (M6). Endoscopic postoperative recurrence was graded using Rutgeerts' index. The mucosa-associated microbiota was analysed by 16S sequencing at M0 and M6. Relative risks or ORs were adjusted on potential confounders. RESULTS: AIEC prevalence was twofold higher within the neoterminal ileum at M6 (30.3%) than within the surgical specimen (14.9%) (p<0.001). AIEC within the neoterminal ileum at M6 was associated with higher rate of early ileal lesions (i1) (41.6% vs 17.1%; aRR 3.49 (95% CI 1.01 to 12.04), p=0.048) or ileal lesions (i2b+i3) (38.2% vs 17.1%; aRR 3.45 (95% CI 1.06 to 11.30), p=0.040) compared with no lesion (i0). AIEC within the surgical specimen was predictive of higher risk of i2b-endoscopic postoperative recurrence (POR) (aOR 2.54 (95% CI 1.01 to 6.44), p=0.049) and severe endoscopic POR (aOR 3.36 (95% CI 1.25 to 9.06), p=0.017). While only 5.0% (6/119) of the patients were AIEC-positive at both M0 and M6, 43.7% (52/119), patients with history of positive test for AIEC (M0 or M6) had higher risk of ileal endoscopic POR (aOR 2.32 (95% CI 1.01 to 5.39), p=0.048)), i2b-endoscopic postoperative recurrence (aOR 2.41 (95% CI 1.01 to 5.74); p=0.048) and severe endoscopic postoperative (aOR=3.84 (95% CI 1.32 to 11.18), p=0.013). AIEC colonisation was associated with a specific microbiota signature including increased abundance of Ruminococcus gnavus. CONCLUSION: Based on the postoperative recurrence model, our data support the idea that AIEC are involved in the early steps of ileal CD. TRIAL REGISTRATION NUMBER: NCT03458195.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Humanos , Adhesión Bacteriana , Colonoscopía , Enfermedad de Crohn/patología , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Íleon/microbiología , Estudios Prospectivos , Recurrencia
14.
Infect Disord Drug Targets ; 23(2): e080922208695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36089795

RESUMEN

BACKGROUND: Urinary tract infections represent a world public health problem, which is caused mainly by Uropathogenic Escherichia coli. Although they are originally found in the intestinal microbiota in the majority of the cases, urinary tract infections can also be caused by intra-intestinal pathogenic E. coli. OBJECTIVE: The main objective of our research is to identify the virulence factors generally associated with different pathotypes across phylogenetic groups. METHODS: E. coli were isolated from patients with urinary tract infections. Antimicrobial susceptibility tests, virulence genes and phylogroups were prospected. The data analysis were performed using the chi-square and Fisher exact test. RESULTS: In total, 72.2% of isolates showed multidrug resistant. We have also depicted an important association between E. coli from inpatients with UTIs and pap and hlyA genes (p-0.041 and p-0.019 respectively). The predominant phylogenetic group in our isolates is B2 (45.4%) followed by D (12.4%). Our results showed that 9.3% of isolates have an unknown phylogroup which shows a significant association with astA gene (p-0.008). We have as well found a significant association between B2 and three virulence genes namely pap, hlyA and invE (p-0.002, p-0.001, p-0.025 respectively); B1 and pap, hlyA genes (p-0.049 and p-0.021 respectively); E and afa gene (p-0.024). CONCLUSION: Certain virulence factors have been shown to be potential targets for drug design and therapeutic pathways in order to deal with the antimicrobial resistance problem enhanced by antibiotic therapy.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Filogenia , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/genética , Virulencia/genética , Factores de Virulencia/genética
15.
BMJ Open ; 12(12): e061527, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460331

RESUMEN

INTRODUCTION: The management of mid and low rectal cancer is based on neoadjuvant chemoradiotherapy (CRT) followed by standardised surgery. There is no biomarker in rectal cancer to aid clinicians in foreseeing treatment response. The determination of factors associated with treatment response might allow the identification of patients who require tailored strategies (eg, therapeutic de-escalation or intensification). Colibactin-producing Escherichia coli (CoPEC) has been associated with aggressive colorectal cancer and could be a poor prognostic factor. Currently, no study has evaluated the potential association between intestinal microbiota composition and tumour response to CRT in mid and low rectal cancer. The aim of this study is to assess the association between response to neoadjuvant CRT and faecal intestinal microbiota composition and/or CoPEC prevalence in patients with mid or low rectal cancer. METHODS AND ANALYSIS: This is a non-randomised bicentric prospective clinical study with a recruitment capacity of 200 patients. Three stool samples will be collected from participants with histological-proven adenocarcinome of mid or low rectum who meet eligibility criteria of the study protocol: one before neoadjuvant treatment start, one in the period between CRT end and surgery and one the day before surgery. In each sample, CoPEC will be detected by culture in special media and molecular (PCR) approaches. The global microbiota composition will be also assessed by the bacterial 16S rRNA gene sequencing. Neoadjuvant CRT response and tumour regression grade will be described using the Dworak system at pathological examination. Clinical data and survival outcomes will also be collected and investigated. ETHICS AND DISSEMINATION: MICARE was approved by the local ethics committee (Comité de Protection des Personnes Sud-Est II, 18 December 2019. Reference number 2019-A02493-54 and the institutional review board. Patients will be required to provide written informed consent. Results will be published in a peer reviewed journal. TRIAL REGISTRATION NUMBER: NCT04103567.


Asunto(s)
Infecciones por Escherichia coli , Neoplasias del Recto , Humanos , Terapia Neoadyuvante , Escherichia coli , Estudios Prospectivos , ARN Ribosómico 16S , Neoplasias del Recto/terapia , Biomarcadores
16.
Curr Protoc ; 2(9): e548, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36094300

RESUMEN

The oligo-mouse-microbiota (OMM12 ) is a widely used syncom that colonizes gnotobiotic mice in a stable manner. It provides several fundamental functions to its murine host, including colonization resistance against enteric pathogens. Here, we designed and validated specific fluorescence in situ hybridization (FISH) probes to detect and quantify OMM12 strains on intestinal tissue cross sections. 16S rRNA-specific probes were designed, and specificity was validated on fixed pure cultures. A hybridization protocol was optimized for sensitive detection of the individual bacterial cells in cryosections. Using this method, we showed that the intestinal mucosal niche of Akkermansia muciniphila can be influenced by global gut microbial community context. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Localization and quantification of OMM12 single strains in mouse cecum cross section Support Protocol: Establishment of specific FISH probe set for OMM12 syncom.


Asunto(s)
Microbiota , Animales , Hibridación Fluorescente in Situ/métodos , Ratones , Sondas de Oligonucleótidos , ARN Ribosómico 16S/genética
17.
Gut Microbes ; 14(1): 2127444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36175163

RESUMEN

ABBREVIATIONS: AIEC Adherent-Invasive Escherichia coli; BSA Bovine serum albumin; CD Crohn's disease; CEABAC10 Carcinoembryonic antigen bacterial artificial chromosome 10; CEACAM Carcinoembryonic antigen-related cell adhesion molecule; FBS Fetal bovine serum; IBD Inflammatory Bowel Disease; HAT Histone acetyltransferase; HDAC Histone deacetylase; kDa KiloDalton; SAHA Suberoylanilide Hydroxamic Acid; Scr Scramble.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Antígeno Carcinoembrionario , Enterobacteriaceae , Epigénesis Genética , Histona Acetiltransferasas/genética , Histona Desacetilasa 1 , Histona Desacetilasas , Humanos , Membrana Mucosa , Albúmina Sérica Bovina , Vorinostat
18.
Dis Model Mech ; 15(10)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36172858

RESUMEN

Adherent-invasive Escherichia coli (AIEC) were investigated for their involvement in the induction/chronicity of intestinal inflammation in Crohn's disease (CD). AIEC gut establishment is favoured by overexpression of the glycoprotein CEACAM6 in the ileal epithelium. We generated a transgenic mouse model, named 'Vill-hCC6', in which the human CEACAM6 gene was under the control of the villin promoter, conditioning expression in the small intestine. We demonstrated that CEACAM6 is strongly expressed in the small intestine mucosa and is correlated with numerous glycosylations displayed at the brush border of enterocytes. Ex vivo, the AIEC-enterocyte interaction was enhanced by CEACAM6 expression and necessitated the presence of the bacterial adhesive factor FimH. Finally, AIEC bacteria preferentially persisted in a FimH-dependent manner in the ileal mucosa of Vill-hCC6 mice compared to wild-type mice. This preclinical model opens new perspectives in the mechanistic study of the AIEC pathobiont and represents a valuable tool to evaluate the efficacy of new strategies to eliminate AIEC implanted in the ileal mucosa, such as phages, inhibitory and/or anti-virulence molecules, or CRISPR-based strategies targeting virulence or fitness factors of AIEC bacteria.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Microbiota , Ratones , Humanos , Animales , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/microbiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Adhesión Bacteriana , Escherichia coli/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
20.
Cell Rep ; 40(3): 111093, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858565

RESUMEN

Pathobionts employ unique metabolic adaptation mechanisms to maximize their growth in disease conditions. Adherent-invasive Escherichia coli (AIEC), a pathobiont enriched in the gut mucosa of patients with inflammatory bowel disease (IBD), utilizes diet-derived L-serine to adapt to the inflamed gut. Therefore, the restriction of dietary L-serine starves AIEC and limits its fitness advantage. Here, we find that AIEC can overcome this nutrient limitation by switching the nutrient source from the diet to the host cells in the presence of mucolytic bacteria. During diet-derived L-serine restriction, the mucolytic symbiont Akkermansia muciniphila promotes the encroachment of AIEC to the epithelial niche by degrading the mucus layer. In the epithelial niche, AIEC acquires L-serine from the colonic epithelium and thus proliferates. Our work suggests that the indirect metabolic network between pathobionts and commensal symbionts enables pathobionts to overcome nutritional restriction and thrive in the gut.


Asunto(s)
Infecciones por Escherichia coli , Adhesión Bacteriana , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Expectorantes/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Nutrientes , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...