Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Robot ; 6(56)2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290101

RESUMEN

A swarm of simple active particles confined in a flexible scaffold is a promising system to make mobile and deformable superstructures. These soft structures can perform tasks that are difficult to carry out for monolithic robots because they can infiltrate narrow spaces, smaller than their size, and move around obstacles. To achieve such tasks, the origin of the forces the superstructures develop, how they can be guided, and the effects of external environment, especially geometry and the presence of obstacles, need to be understood. Here, we report measurements of the forces developed by such superstructures, enclosing a number of mindless active rod-like robots, as well as the forces exerted by these structures to achieve a simple function, crossing a constriction. We relate these forces to the self-organization of the individual entities. Furthermore, and based on a physical understanding of what controls the mobility of these superstructures and the role of geometry in such a process, we devise a simple strategy where the environment can be designed to bias the mobility of the superstructure, giving rise to directional motion. Simple tasks-such as pulling a load, moving through an obstacle course, or cleaning up an arena-are demonstrated. Rudimentary control of the superstructures using light is also proposed. The results are of relevance to the making of robust flexible superstructures with nontrivial space exploration properties out of a swarm of simpler and cheaper robots.

2.
Phys Rev Lett ; 120(18): 188002, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775342

RESUMEN

Simple ingredients, such as well-defined interactions and couplings for the velocity and orientation of self-propelled objects, are sufficient to produce complex collective behavior in assemblies of such entities. Here, we use assemblies of rodlike robots made motile through self-vibration. When confined in circular arenas, dilute assemblies of these rods act as a gas. Increasing the surface fraction leads to a collective behavior near the boundaries: polar clusters emerge while, in the bulk, gaslike behavior is retained. The coexistence between a gas and surface clusters is a direct consequence of inertial effects as shown by our simulations. A theoretical model, based on surface mediated transport accounts for this coexistence and illustrates the exact role of the boundaries. Our study paves the way towards the control of collective behavior: By using deformable but free to move arenas, we demonstrate that the surface induced clusters can lead to directed motion, while the topology of the surface states can be controlled by biasing the motility of the particles.

3.
Phys Rev E ; 96(3-1): 033105, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29346938

RESUMEN

The position of floating spheres trapped within an immersed turbulent water jet is investigated. Using the self-similarity properties of the jet velocity profile, the equilibrium problem is formulated in a rescaled space where the sphere is static and deformable. This approach is found to be related to a problem of elastic reconfiguration where elasticity arises here from the geometry of the flow instead of an actual deformation of a body.

4.
Nano Lett ; 13(4): 1451-6, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23528158

RESUMEN

We report here the observation of a new self-oscillation mechanism in nanoelectromechanical systems (NEMS). A highly resistive nanowire was positioned to form a point-contact at a chosen vibration node of a silicon carbide nanowire resonator. Spontaneous and robust mechanical oscillations arise when a sufficient DC voltage is applied between the two nanowires. An original model predicting the threshold voltage is used to estimate the piezoresistivity of the point-contact in agreement with the observations. The measured input power is in the pW-range which is the lowest reported value for such systems. The simplicity of the contacting procedure and the low power consumption open a new route for integrable and low-loss self-excited NEMS devices.


Asunto(s)
Nanotecnología , Nanotubos/química , Nanocables/química , Radiación Electromagnética , Diseño de Equipo , Sistemas Microelectromecánicos/instrumentación , Tamaño de la Partícula
5.
Nano Lett ; 12(7): 3551-6, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22703289

RESUMEN

This article presents a study of the poorly understood "shear-force" used in an important class of near-field instruments that use mechanical resonance feedback detection. In the case of a metallic probe near a metallic surface in vacuum, we show that in the 10-60 nm range there is no such a thing as a shear-force in the sense of the nonconservative friction force. Fluctuations of the oscillator resonance frequency, likely induced by local charge variations, could account for the reported effects in the literature without introducing a dissipative force.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...