Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Theor Appl Genet ; 137(7): 156, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858297

RESUMEN

KEY MESSAGE: Phenomic prediction implemented on a large diversity set can efficiently predict seed germination, capture low-effect favorable alleles that are not revealed by GWAS and identify promising genetic resources. Oilseed rape faces many challenges, especially at the beginning of its developmental cycle. Achieving rapid and uniform seed germination could help to ensure a successful establishment and therefore enabling the crop to compete with weeds and tolerate stresses during the earliest developmental stages. The polygenic nature of seed germination was highlighted in several studies, and more knowledge is needed about low- to moderate-effect underlying loci in order to enhance seed germination effectively by improving the genetic background and incorporating favorable alleles. A total of 17 QTL were detected for seed germination-related traits, for which the favorable alleles often corresponded to the most frequent alleles in the panel. Genomic and phenomic predictions methods provided moderate-to-high predictive abilities, demonstrating the ability to capture small additive and non-additive effects for seed germination. This study also showed that phenomic prediction estimated phenotypic values closer to phenotypic values than GEBV. Finally, as the predictive ability of phenomic prediction was less influenced by the genetic structure of the panel, it is worth using this prediction method to characterize genetic resources, particularly with a view to design prebreeding populations.


Asunto(s)
Alelos , Brassica napus , Germinación , Fenotipo , Sitios de Carácter Cuantitativo , Semillas , Germinación/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Fenómica/métodos , Genómica/métodos , Genotipo , Fitomejoramiento/métodos
2.
Physiol Plant ; 176(1): e14130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38842416

RESUMEN

In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.


Asunto(s)
Brassica napus , Sequías , Regulación de la Expresión Génica de las Plantas , Semillas , Estrés Fisiológico , Brassica napus/genética , Brassica napus/fisiología , Semillas/genética , Semillas/crecimiento & desarrollo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodiophorida/fisiología , Transcriptoma/genética
3.
Am J Physiol Renal Physiol ; 326(5): F694-F703, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511221

RESUMEN

Left atrial (LA) function plays a pivotal role in cardiac performance by modulating left ventricular (LV) function. Impairments in LV function are commonly reported during hemodialysis (HD), but available data describing changes in LA function are limited. There is growing evidence of the cardioprotective effect of intradialytic exercise (IDE) on LV function, but studies analyzing its effect on LA function are scarce. Our aim was to evaluate whether IDE can limit the severity of HD-induced impairment in LA myocardial function. In this prospective, open-label, two-center randomized crossover trial, 56 stable individuals receiving HD participated in 2 HD sessions in random order: standard HD and a session incorporating 30 min of aerobic exercise. LA and LV global longitudinal strains (GLSs) were obtained before and at peak stress of HD (i.e., 30 min before the HD ending). IDE totally eradicated the decline in LA reservoir strain observed during HD (estimated difference: 3.1%, 95% confidence interval: 0.4/5.8, P = 0.02), whereas it did not affect the other components of LA mechanics. A similar result favoring IDE intervention was also demonstrated on GLS changes over the HD procedure (P < 0.001). Between-session differences of changes in GLS and LA reservoir strain were correlated (r = -0.32, P = 0.03). The cardioprotective effect of IDE disappeared in patients with LA enlargement (i.e., LA volume index >34 mL/m2). In conclusion, even a short duration of IDE at moderate intensity is effective in preventing HD-associated decline in LA reservoir function. Further research is needed to explore the long-term benefits of IDE on LA function.NEW & NOTEWORTHY A single bout of intradialytic exercise (IDE) at moderate intensity can prevent the hemodialysis-associated decline in left atrial (LA) function. This was partially explained by the relative preservation of left ventricular systolic function with IDE. Benefits of IDE on LA function were lost in patients with LA dilation. Further studies are needed to explore the mechanisms behind IDE-induced cardioprotection and evaluate the clinical impacts of the repetitive cardioprotective effects of IDE on LA function.


Asunto(s)
Función del Atrio Izquierdo , Estudios Cruzados , Diálisis Renal , Función Ventricular Izquierda , Humanos , Masculino , Diálisis Renal/efectos adversos , Femenino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Atrios Cardíacos/fisiopatología , Terapia por Ejercicio/métodos , Resultado del Tratamiento
4.
Ultrasonics ; 138: 107226, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103352

RESUMEN

Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria.


Asunto(s)
Terapia por Ultrasonido , Ultrasonido , Mecanotransducción Celular , Acústica , Ondas Ultrasónicas
5.
J Am Soc Nephrol ; 34(8): 1445-1455, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37071035

RESUMEN

SIGNIFICANCE STATEMENT: Hemodialysis (HD) can lead to acute left ventricular (LV) myocardial wall motion abnormalities (myocardial stunning) due to segmental hypoperfusion. Exercise during dialysis is associated with favorable effects on central hemodynamics and BP stability, factors considered in the etiology of HD-induced myocardial stunning. In a speckle-tracking echocardiography analysis, the authors explored effects of acute intradialytic exercise (IDE) on LV regional myocardial function in 60 patients undergoing HD. They found beneficial effects of IDE on LV longitudinal and circumferential function and on torsional mechanics, not accounted for by cardiac loading conditions or central hemodynamics. These findings support the implementation of IDE in people with ESKD, given that LV transient dysfunction imposed by repetitive HD may contribute to heart failure and increased risk of cardiac events in such patients. BACKGROUND: Hemodialysis (HD) induces left ventricular (LV) transient myocardial dysfunction. A complex interplay between linear deformations and torsional mechanics underlies LV myocardial performance. Although intradialytic exercise (IDE) induces favorable effects on central hemodynamics, its effect on myocardial mechanics has never been comprehensively documented. METHODS: To evaluate the effects of IDE on LV myocardial mechanics, assessed by speckle-tracking echocardiography, we conducted a prospective, open-label, two-center randomized crossover trial. We enrolled 60 individuals with ESKD receiving HD, who were assigned to participate in two sessions performed in a randomized order: standard HD and HD incorporating 30 minutes of aerobic exercise (HDEX). We measured global longitudinal strain (GLS) at baseline (T0), 90 minutes after HD onset (T1), and 30 minutes before ending HD (T2). At T0 and T2, we also measured circumferential strain and twist, calculated as the net difference between apical and basal rotations. Central hemodynamic data (BP, cardiac output) also were collected. RESULTS: The decline in GLS observed during the HD procedure was attenuated in the HDEX sessions (estimated difference, -1.16%; 95% confidence interval [95% CI], -0.31 to -2.02; P = 0.008). Compared with HD, HDEX also demonstrated greater improvements from T0 to T2 in twist, an important component of LV myocardial function (estimated difference, 2.48°; 95% CI, 0.30 to 4.65; P = 0.02). Differences in changes from T0 to T2 for cardiac loading and intradialytic hemodynamics did not account for the beneficial effects of IDE on LV myocardial mechanics kinetics. CONCLUSIONS: IDE applied acutely during HD improves regional myocardial mechanics and might warrant consideration in the therapeutic approach for patients on HD.


Asunto(s)
Aturdimiento Miocárdico , Disfunción Ventricular Izquierda , Humanos , Estudios Prospectivos , Ecocardiografía/métodos , Función Ventricular Izquierda , Ejercicio Físico , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/prevención & control
6.
Clin Physiol Funct Imaging ; 43(3): 154-164, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36507586

RESUMEN

PURPOSE: This study aimed to evaluate feasibility and early effects of moderate intensity bed-cycling eccentric training on healthy individuals, and establish whether this training modality could be implemented into bedridden patients' routine care. METHODS: Longitudinal study with prepost exercise intervention measurements. The development of a bed-adapted eccentric ergometer allowed to conduct five training sessions during 3 weeks at increasing intensity on 11 healthy individuals. Force-speed relationship, maximal voluntary knee extension force and neural activation of subjects were evaluated before and after the programme. RESULTS: Five training sessions were sufficient to decrease the rate of perceived exertion whereas eccentric power output increased (+40%). After training, maximal voluntary isometric contraction force measured during knee extension had significantly improved in all subjects, with a mean increase of 17%. Maximal cycling power was also significantly higher (+7%) after the training programme. CONCLUSION: Taken together, these results show that moderate load eccentric bed cycling (i) was feasible and efficient, (ii) did not generate excessive individual perception of effort during exercise nor develop major muscular or joint pain after training and (iii) allowed early force and power gains in healthy subjects.


Asunto(s)
Ejercicio Físico , Contracción Isométrica , Humanos , Estudios de Factibilidad , Estudios Longitudinales , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Contracción Muscular/fisiología
7.
Adv Exp Med Biol ; 1364: 297-318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508881

RESUMEN

A better understanding of the mechanical behaviour of child bone is essential to improve the diagnosis of pediatric bone disorders that may influence bone development. Even though the process of bone growth is well described, there are still lacks of knowledge on intrinsic material properties of child bone and particularly on child bone considered as "non-pathological". Geometry, material properties, microstructure and biochemical components are associated with child bone fragility and remain difficult to assess for two main reasons: the scarcity of the bone samples and their small dimensions. In this context, ultrasonic methods offer interesting possibilities by exploiting in particular their non-destructive character. In this chapter, the elasticity properties of Non Pathological Child Cortical Bone (NPCCB) obtained by ultrasonic methods are presented. The objective was to contribute to the construction of a reference database on NPCCB that would serve as a point of comparison for analyzing the effect of a pathology or treatment. After the presentation of the hypotheses on the elasticity and anisotropy of NPCCB, ultrasonic transmission-mode and resonance spectroscopy methods are described. Results are presented and discussed with respect to microstructural and biochemical properties.


Asunto(s)
Huesos , Hueso Cortical , Anisotropía , Desarrollo Óseo , Huesos/diagnóstico por imagen , Niño , Hueso Cortical/diagnóstico por imagen , Elasticidad , Humanos
8.
Semin Dial ; 35(2): 154-164, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34751456

RESUMEN

INTRODUCTION: This study aimed to assess if an interference effect could blunt the neuromuscular gains induced by a same-session combined rehabilitation in hemodialysis (HD) patients. METHODS: Patients exercised twice a week, for 16 weeks, over their HD sessions. They were either always trained with resistance and endurance exercises (continuous training, "CONT") or alternatively with 1 week of resistance alternated with 1 week of endurance (discontinuous training, "DISC"). Adherence and workload were continuously recorded. Short Physical Performance Battery (SPPB) score, one-leg balance test, and handgrip and quadriceps strength were evaluated before and after training intervention. RESULTS: Adherence to both programs was high (>90%). SPPB score had significantly improved (CONT: +1.5 point, DISC: +1.2 pt, p < 0.001), like one-leg balance test (CONT: +3.7 s, DISC: +5.5 s, p < 0.05), handgrip strength of exercised (CONT: +5.5 kg, DISC: +5.6 kg, p < 0.001) and of nonexercised arm (CONT: +4.4 kg, DISC: +2.8 kg, p < 0.01) as well as maximal quadriceps strength (+22 N·m for dominant and +29 N·m for nondominant leg in both groups, p < 0.001) bearing no difference between the trainings. CONCLUSION: Same-session combined training does not induce an interference effect in HD patients and temporal separation of exercises does not optimize strength gains. These practical data may be relevant for clinicians and practitioners to alternate endurance and resistance exercises.


Asunto(s)
Fuerza Muscular , Resistencia Física , Terapia por Ejercicio , Fuerza de la Mano , Humanos , Diálisis Renal
9.
Data Brief ; 38: 107392, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34611536

RESUMEN

Oilseed rape (Brassica napus L.) is the third largest oil crop worldwide. Like other crops, oilseed rape faces unfavorable environmental conditions resulting from multiple and combined actions of abiotic and biotic constraints that occur throughout the growing season. In particular drought severely reduces seed yield but also impacts seed quality in oilseed rape. In addition, clubroot disease, caused by the pathogen Plasmodiophora brassicae, limits the yield of the oilseed rape crops grown in infected areas. Clubroot induces swellings or galls on the roots that decrease the flow of water and nutrients within the plant. Furthermore, combinations of different stresses lead to complex plant responses that can not be predicted by the simple addition of individual stress responses. Indeed, an abiotic constraint can either reduce or stimulate the plant response to a pathogen or pest. Transcriptome datasets from different conditions are key resources to improve our knowledge of environmental stress-resistance mechanisms in plant organs. Here, we describe a RNA-seq dataset consisting of 72 samples of immature B. napus seeds from plants grown either under drought, infected with P. brassicae, or a combination of both stresses. A total of 67.6 Gb of transcriptome paired-end reads were filtered, mapped onto the B. napus reference genome Darmor-bzh and used for identification of differentially expressed genes and gene ontology enrichment. The raw reads are available under accession PRJNA738318 at NCBI Sequence Read Archive (SRA) repository. The dataset is a resource for the scientific community exploring seed plasticity.

10.
Data Brief ; 37: 107247, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34277900

RESUMEN

Faced with the challenges of adapting agriculture to climate change, seed production should have increased resilience to abiotic stress factors and the expected proliferation of pathogens. This concerns both the nutritional quality and seed vigor, two crucial factors in seedling establishment and yield. Both qualities are acquired during seed development, but how environment influences the genetic and physiological determinisms of these qualities remains to be elucidated. With a world production of 71 Mt of seeds per year, oilseed rape (Brassica napus) is the third largest oleaginous crop. But its productivity must cope with several abiotic stresses, among which drought is one of the main constraints in current and future climate scenarios. In addition, clubroot disease, caused by the pathogen Plasmodiophora brassicae, leads to severe yield losses for the Brassica crops worldwide. Clubroot provokes the formation of galls on the infected roots that can restrict the flow of water and nutrients within the plant throughout the growth cycle. In order to get new insights into the impact of single or combined constraints on seed qualities, metabolic profiling assays were run for a collection of 330 seed samples (including developing, mature and imbibed seeds) harvested from plants of two B. napus cultivars ("Express" and "Montego") that were grown under either drought conditions, the presence of P. brassicae, or a combination of both stresses. Metabolites were identified and quantified by UPLC or GC. In addition, monitoring germination traits was conducted for 60 mature seed lots under in vitro conditions using an automated phenotyping platform. The present dataset contains the raw contents for 42 metabolites (nmol.mg-1 of seed dry weight) filtered and analyzed with statistical tests as well as germination speed and percentages. This dataset is available under accession at Data INRAE. These data will contribute to a better understanding of the crosstalk between the plant responses to water deprivation and/or pathogen attack and how it compromises seed quality. A better understanding of the molecular and physiological responses of the seed to (a)biotic stress on a molecular and physiological will be a first step to meet scientific and technological challenges of adapting seeds to their environment.

11.
Sci Rep ; 10(1): 15698, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973276

RESUMEN

Juvenile bone growth is well described (physiological and anatomical) but there are still lacks of knowledge on intrinsic material properties. Our group has already published, on different samples, several studies on the assessment of intrinsic material properties of juvenile bone compared to material properties of adult bone. The purpose of this study was finally to combine different experimental modalities available (ultrasonic measurement, micro-Computed Tomography analysis, mechanical compression tests and biochemical measurements) applied on small cubic bone samples in order to gain insight into the multiparametric evaluation of bone quality. Differences were found between juvenile and adult groups in term of architectural parameters (Porosity Separation), Tissue Mineral Density (TMD), diagonal stiffness coefficients (C33, C44, C55, C66) and ratio between immature and mature cross-links (CX). Diagonal stiffness coefficients are more representative of the microstructural and biochemical parameters of child bone than of adult bone. We also found that compression modulus E was highly correlated with several microstructure parameters and CX in children group while it was not at all correlated in the adult group. Similar results were found for the CX which was linked to several microstructure parameters (TMD and E) only in the juvenile group. To our knowledge, this is the first time that, on a same sample, ultrasonic measurements have been combined with the assessment of mechanical and biochemical properties. It appears that ultrasonic measurements can provide relevant indicators of child bone quality (microstructural and biochemical parameters) which is promising for clinical application since, B-mode ultrasound is the preferred first-line modality over other more constraining imaging modalities (radiation, parent-child accessibility and access to the patient's bed) for pediatric patients.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos/fisiología , Densidad Ósea/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ultrasonografía , Microtomografía por Rayos X
12.
Biomech Model Mechanobiol ; 19(5): 1755-1764, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32078068

RESUMEN

Ultrasound stimulation is thought to influence bone remodelling process. But recently, the efficiency of ultrasound therapy for bone healing has been questioned. Despite an extensive literature describing the positive effect of ultrasound on bone regeneration-cell cultures, animal models, clinical studies-there are more and more reviews denouncing the inefficiency of clinical devices based on low-intensity pulsed ultrasound stimulation (LIPUS) of the bone healing. One of the reasons to cause controversy comes from the persistent misunderstanding of the underlying physical and biological mechanisms of ultrasound stimulation of bone repair. As ultrasonic waves are mechanical waves, the process to be studied is the one of the mechanotransduction. Previous studies on the bone mechanotransduction have demonstrated the key role of the osteocytes in bone mechano-sensing. Osteocytes are bone cells ubiquitous inside the bone matrix; they are immersed in the interstitial fluid (IF) inside the lacuno-canalicular network (LCN). They are considered as particularly sensitive to a particular type of mechanical stress: wall shear stress on osteocytes due to the IF flow in the LCN. Inspired from these findings and observations, the present work investigates the effect of LIPUS on the cortical bone from the tissue to the osteocytes, considering that the impact of the ultrasound stimulation applied at the tissue scale is related to the mechanical stress experimented by the bone cells. To do that simulations based on the finite element method are carried out in the commercial software Comsol Multiphysics to assess the wall shear stress levels induced by the LIPUS on the osteocytes. Two formulations of the wall shear stress were investigated based on two IF flow models inside the LCN and associated with two different values of the LCN permeability. The wall shear stress estimate is very different depending on the assumption considered. One of these two models provides wall shear stress values in accordance with previous works published on bone mechanotransduction. This study presents the preliminary results of a computational model that could provide keys to understanding the underlying mechanisms of the LIPUS.


Asunto(s)
Remodelación Ósea/fisiología , Simulación por Computador , Ultrasonografía , Animales , Elasticidad , Humanos , Porosidad , Resistencia al Corte/fisiología , Estrés Mecánico
13.
Sci Rep ; 9(1): 17629, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772277

RESUMEN

Human cortical bone contains two types of tissue: osteonal and interstitial tissue. Growing bone is not well-known in terms of its intrinsic material properties. To date, distinctions between the mechanical properties of osteonal and interstitial regions have not been investigated in juvenile bone and compared to adult bone in a combined dataset. In this work, cortical bone samples obtained from fibulae of 13 juveniles patients (4 to 18 years old) during corrective surgery and from 17 adult donors (50 to 95 years old) were analyzed. Microindentation was used to assess the mechanical properties of the extracellular matrix, quantitative microradiography was used to measure the degree of bone mineralization (DMB), and Fourier transform infrared microspectroscopy was used to evaluate the physicochemical modifications of bone composition (organic versus mineral matrix). Juvenile and adult osteonal and interstitial regions were analyzed for DMB, crystallinity, mineral to organic matrix ratio, mineral maturity, collagen maturity, carbonation, indentation modulus, indicators of yield strain and tissue ductility using a mixed model. We found that the intrinsic properties of the juvenile bone were not all inferior to those of the adult bone. Mechanical properties were also differently explained in juvenile and adult groups. The study shows that different intrinsic properties should be used in case of juvenile bone investigation.


Asunto(s)
Hueso Cortical/crecimiento & desarrollo , Peroné/crecimiento & desarrollo , Adolescente , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Fenómenos Biomecánicos , Calcificación Fisiológica , Carbono/análisis , Niño , Preescolar , Colágeno/análisis , Hueso Cortical/química , Hueso Cortical/diagnóstico por imagen , Hueso Cortical/ultraestructura , Cristalización , Matriz Extracelular/fisiología , Femenino , Peroné/química , Peroné/diagnóstico por imagen , Peroné/ultraestructura , Osteón/diagnóstico por imagen , Osteón/crecimiento & desarrollo , Osteón/ultraestructura , Humanos , Masculino , Persona de Mediana Edad , Minerales/análisis , Modelos Biológicos , Estrés Mecánico
14.
Connect Tissue Res ; 60(4): 399-405, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30646770

RESUMEN

Purpose: Non-pathological child cortical bone (NPCCB) studies can provide clinicians with vital information and insights. However, assessing the anisotropic elastic properties of NPCCB remains a challenge for the biomechanical engineering community. For the first time, this paper provides elastic moduli values for NPCCB specimens in two perpendicular directions (longitudinal and transverse) and for two different structural components of bone tissue (osteon and interstitial lamellae). Materials and Methods: Microindentation is one of the reference methods used to measure bone stiffness. Here, 8 adult femurs (mean age 82 ± 8.9 years), 3 child femurs (mean age 13.3 ± 2.1 years), and 16 child fibulae (mean age 10.2 ± 3.9 years) were used to assess the elastic moduli of adult and child bones by microindentation. Results: For adult specimens, the mean moduli measured in this study are 18.1 (2.6) GPa for osteons, 21.3 (2.3) GPa for interstitial lamellae, and 13.8 (1.7) GPa in the transverse direction. For child femur specimens, the mean modulus is 14.1 (0.8) GPa for osteons, lower than that for interstitial lamellae: 15.5 (1.5) GPa. The mean modulus is 11.8 (0.7) GPa in the transverse direction. Child fibula specimens show a higher elastic modulus for interstitial lamellae 15.8 (1.5) than for osteons 13.5 (1.6), with 10.2 (1) GPa in the transverse direction. Conclusion: For the first time, NPCCB elastic modulus values are provided in longitudinal and transverse directions at the microscale level.


Asunto(s)
Hueso Cortical/fisiología , Módulo de Elasticidad , Fisiología/métodos , Adolescente , Anciano de 80 o más Años , Niño , Humanos
15.
J Mech Behav Biomed Mater ; 90: 40-44, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30343169

RESUMEN

The assessment of the anisotropic elastic properties of non-pathological child cortical bone remains a challenge for the biomechanical engineering community and an important clinical issue. Resonant ultrasound spectroscopy (RUS) can be used to determine bone stiffness coefficients from the mechanical resonances of bone specimens. Here, a RUS protocol was used on 7 fibula specimens from children (mean age 14 ±â€¯3 years) to estimate the whole elastic stiffness tensor of non-pathological child cortical bone considered as orthotropic. Despite a small number of sample, results are consistent with this hypothesis, even if a trend towards transverse isotropy is discussed. Indeed, the average values of the 9 independent stiffness coefficients obtained in this study for child bone are: C11 = 16.73 ±â€¯0.19 GPa, C22 = 16.19 ±â€¯0.12 GPa, C33 = 24.47 ±â€¯0.30 GPa, C44 = 4.14 ±â€¯0.08 GPa, C55 = 4.16 ±â€¯0.07 GPa, C66 = 3.13 ±â€¯0.05 GPa, C12 = 10.14 ±â€¯0.20 GPa, C13 = 10.67 ±â€¯0.27 GPa, C23 = 10.25 ±â€¯0.14 GPa.


Asunto(s)
Hueso Cortical , Elasticidad , Ensayo de Materiales , Análisis Espectral , Ondas Ultrasónicas , Adolescente , Anisotropía , Niño , Humanos
16.
Theor Appl Genet ; 131(8): 1627-1643, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29728747

RESUMEN

KEY MESSAGE: A repertoire of the genomic regions involved in quantitative resistance to Leptosphaeria maculans in winter oilseed rape was established from combined linkage-based QTL and genome-wide association (GWA) mapping. Linkage-based mapping of quantitative trait loci (QTL) and genome-wide association studies are complementary approaches for deciphering the genomic architecture of complex agronomical traits. In oilseed rape, quantitative resistance to blackleg disease, caused by L. maculans, is highly polygenic and is greatly influenced by the environment. In this study, we took advantage of multi-year data available on three segregating populations derived from the resistant cv Darmor and multi-year data available on oilseed rape panels to obtain a wide overview of the genomic regions involved in quantitative resistance to this pathogen in oilseed rape. Sixteen QTL regions were common to at least two biparental populations, of which nine were the same as previously detected regions in a multi-parental design derived from different resistant parents. Eight regions were significantly associated with quantitative resistance, of which five on A06, A08, A09, C01 and C04 were located within QTL support intervals. Homoeologous Brassica napus genes were found in eight homoeologous QTL regions, which corresponded to 657 pairs of homoeologous genes. Potential candidate genes underlying this quantitative resistance were identified. Genomic predictions and breeding are also discussed, taking into account the highly polygenic nature of this resistance.


Asunto(s)
Brassica napus/genética , Resistencia a la Enfermedad/genética , Ligamiento Genético , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Ascomicetos , Brassica napus/microbiología , Mapeo Cromosómico , Estudios de Asociación Genética , Enfermedades de las Plantas/microbiología
17.
BMC Genet ; 17(1): 131, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27628849

RESUMEN

BACKGROUND: Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. RESULTS: Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. CONCLUSIONS: Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.


Asunto(s)
Brassica rapa/genética , Brassica rapa/metabolismo , Metabolismo Energético/genética , Interacción Gen-Ambiente , Nitrógeno/metabolismo , Estaciones del Año , Algoritmos , Evolución Biológica , Mapeo Cromosómico , Análisis por Conglomerados , Estudios de Asociación Genética , Ligamiento Genético , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genómica/métodos , Genotipo , Modelos Estadísticos , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
18.
J Mech Behav Biomed Mater ; 63: 164-173, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27389322

RESUMEN

Cortical porosity is a major determinant of bone strength. Haversian and Volkmann׳s canals are׳seen' as pores in 2D cross-section but fashion a dynamic network of interconnected channels in 3D, a quantifiable footprint of intracortical remodeling. Given the changes in bone remodeling across life, we hypothesized that the 3D microarchitecture of the cortical pore network influences its stiffness during growth and ageing. Cubes of cortical bone of 2 mm side-length were harvested in the distal 1/3 of the fibula in 13 growing children (mean age±SD: 13±4 yrs) and 16 adults (age: 75±13 yrs). The cubes were imaged using desktop micro-CT (8.14µm isotropic voxel size). Pores were segmented as a solid to assess pore volume fraction, number, diameter, separation, connectivity and structure model index. Elastic coefficients were derived from measurements of ultrasonic bulk compression and shear wave velocities and apparent mass density. The pore volume fraction did not significantly differ between children and adults but originates from different microarchitectural patterns. Compared to children, adults had 42% (p=0.033) higher pore number that were more connected (Connective Density: +205%, p=0.001) with a 18% (p=0.007) lower pore separation. After accounting for the contribution of pore volume fraction, axial elasticity in traction-compression mode was significantly correlated with better connectivity in growing children and with pore separation among adults. The changes in intracortical remodeling across life alter the distribution, size and connectedness of the channels from which cortical void fraction originates. These alterations in pore network microarchitecture participate in changes in compressive and shear mechanical behavior, partly in a porosity-independent manner. The assessment of pore volume fraction (i.e., porosity) provides only a limited understanding of the role of cortical void volume fraction in its mechanical properties.


Asunto(s)
Envejecimiento , Hueso Cortical/crecimiento & desarrollo , Hueso Cortical/fisiología , Adolescente , Anciano , Anciano de 80 o más Años , Niño , Elasticidad , Humanos , Persona de Mediana Edad , Porosidad , Microtomografía por Rayos X
19.
Ultrasonics ; 65: 10-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26403278

RESUMEN

When assessing ultrasonic measurements of material parameters, the signal processing is an important part of the inverse problem. Measurements of thickness, ultrasonic wave velocity and mass density are required for such assessments. This study investigates the feasibility and the robustness of a wavelet-based processing (WBP) method based on a Jaffard-Meyer algorithm for calculating these parameters simultaneously and independently, using one single ultrasonic signal in the reflection mode. The appropriate transmitted incident wave, correlated with the mathematical properties of the wavelet decomposition, was determined using a adapted identification procedure to build a mathematically equivalent model for the electro-acoustic system. The method was tested on three groups of samples (polyurethane resin, bone and wood) using one 1-MHz transducer. For thickness and velocity measurements, the WBP method gave a relative error lower than 1.5%. The relative errors in the mass density measurements ranged between 0.70% and 2.59%. Despite discrepancies between manufactured and biological samples, the results obtained on the three groups of samples using the WBP method in the reflection mode were remarkably consistent, indicating that it is a reliable and efficient means of simultaneously assessing the thickness and the velocity of the ultrasonic wave propagating in the medium, and the apparent mass density of material.


Asunto(s)
Densitometría/métodos , Interpretación de Imagen Asistida por Computador/métodos , Ensayo de Materiales/métodos , Ondas Ultrasónicas , Ultrasonografía/métodos , Análisis de Ondículas , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
20.
Bone ; 79: 190-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26079997

RESUMEN

As a determinant of skeletal fragility, the organic matrix is responsible for the post-yield and creep behavior of bone and for its toughness, while the mineral apatite acts on stiffness. Specific to the fibula and ulna in children, greenstick fractures show a plastic in vivo mechanical behavior before bone fracture. During growth, the immature form of collagen enzymatic cross-links gradually decreases, to be replaced by the mature form until adolescence, subsequently remaining constant throughout adult life. However, the link between the cortical bone organic matrix and greenstick fractures in children remains to be explored. Here, we sought to determine: 1) whether plastic bending fractures can occur in vitro, by testing cortical bone samples from children's fibula and 2) whether the post-yield behavior (ωp plastic energy) of cortical bone before fracture is related to total quantity of the collagen matrix, or to the quantity of mature and immature enzymatic cross-links and the quantity of non-enzymatic cross-links. We used a two-step approach; first, a 3-point microbending device tested 22 fibula machined bone samples from 7 children and 3 elderly adults until fracture. Second, biochemical analysis by HPLC was performed on the sample fragments. When pooling two groups of donors, children and elderly adults, results show a rank correlation between total energy dissipated before fracture and age and a linear correlation between plastic energy dissipated before fracture and ratio of immature/mature cross-links. A collagen matrix with more immature cross-links (i.e. a higher immature/mature cross-link ratio) is more likely to plastically deform before fracture. We conclude that this ratio in the sub-nanostructure of the organic matrix in cortical bone from the fibula may go some way towards explaining the variance in post-yield behavior. From a clinical point of view, therefore, our results provide a potential explanation of the presence of greenstick fractures in children.


Asunto(s)
Matriz Ósea/crecimiento & desarrollo , Matriz Ósea/fisiopatología , Fracturas Óseas/fisiopatología , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Matriz Ósea/química , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Peroné/fisiología , Humanos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...