Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Biomed ; 22(1): 12-22, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505966

RESUMEN

BACKGROUND AND OBJECTIVES: It has long been known that airborne polycyclic aromatic hydrocarbons (PAHs) can negatively affect pregnancy and birth outcomes, such as birth weight, fetal development, and placental growth factors. However, similar studies yield divergent results. Our goal was to estimate the amount of monohydroxylated PAH (OH-PAH) metabolites in the urine of pregnant women/mothers and their newborns in relation to birth outcomes, such as placenta weight, Apgar 5', and the growth parameters of children up to the age of two. METHODS: Two cohorts of children born in 2013 and 2014 during the summer and winter seasons in the Czech Republic in the cities Karviná (N = 144) and Ceské Budejovice (N = 198), which differ significantly in the level of air pollution, were studied. PAH exposure was assessed by the concentration of benzo[a]pyrene (B[a]P) in the air and the concentration of 11 OH-PAH metabolites in the urine of newborns and mothers. Growth parameters and birth outcomes were obtained from medical questionnaires after birth and from pediatric questionnaires during the following 24 months of the child's life. RESULTS: Concentrations of B[a]P were significantly higher in Karviná (p < 0.001). OH-PAH metabolites were significantly higher in the mothers' as well as in the newborns' urine in Karviná and during the winter season. Neonatal length was shorter in newborns in Karviná (p < 0.001), but this difference evened out during the next 3 to 24 months. Compared to Ceské Budejovice, newborns in Karviná showed significantly lower weight gain between birth and three months after delivery. The OH-PAH metabolites in mothers' or newborns' urine did not affect birth weight. The presence of seven OH-PAH (top 25% of values of concentrations higher than the median) metabolites in the newborns' urine is associated with decreased length of newborn. Nine OH-PAH metabolites decreased placenta weight, which was the most significant, while seven OH-PAH metabolites decreased Apgar 5'. CONCLUSION: We have shown a possible connection between higher concentration of OH-PAH metabolites in newborns' urine and decreased length, head circumference, placenta weight, and Apgar 5', but not birth weight.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Recién Nacido , Embarazo , Niño , Peso al Nacer , Efectos Tardíos de la Exposición Prenatal/epidemiología , Placenta , Madres
2.
Eur J Pharm Sci ; 183: 106387, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652970

RESUMEN

Pulmonary fibrosis (PF) is a chronic, irreversible lung disease that is typically fatal and characterized by an abnormal fibrotic response. As a result, vast areas of the lungs are gradually affected, and gas exchange is impaired, making it one of the world's leading causes of death. This can be attributed to a lack of understanding of the onset and progression of the disease, as well as a poor understanding of the mechanism of adverse responses to various factors, such as exposure to allergens, nanomaterials, environmental pollutants, etc. So far, the most frequently used preclinical evaluation paradigm for PF is still animal testing. Nonetheless, there is an urgent need to understand the factors that induce PF and find novel therapeutic targets for PF in humans. In this regard, robust and realistic in vitro fibrosis models are required to understand the mechanism of adverse responses. Over the years, several in vitro and ex vivo models have been developed with the goal of mimicking the biological barriers of the lung as closely as possible. This review summarizes recent progress towards the development of experimental models suitable for predicting fibrotic responses, with an emphasis on cell culture methods, nanomaterials, and a comparison of results from studies using cells from various species.


Asunto(s)
Nanoestructuras , Fibrosis Pulmonar , Animales , Humanos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Pulmón/metabolismo , Técnicas de Cultivo de Célula
3.
J Xenobiot ; 14(1): 1-14, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38535490

RESUMEN

Emissions from modern gasoline engines represent an environmental and health risk. In this study, we aimed to compare the toxicity of organic compound mixtures extracted from particulate matter (PM extracts) produced by neat gasoline (E0) and a blend containing 15% ethanol (E15), which is offered as an alternative to non-renewable fossil fuels. Human lung BEAS-2B cells were exposed to PM extracts, and biomarkers of genotoxicity, such as DNA damage evaluated by comet assay, micronuclei formation, levels of phosphorylated histone H2AX, the expression of genes relevant to the DNA damage response, and exposure to polycyclic aromatic hydrocarbons (PAHs), were determined. Results showed that both PM extracts significantly increased the level of oxidized DNA lesions. The E0 extract exhibited a more pronounced effect, possibly due to the higher content of nitrated PAHs. Other endpoints were not substantially affected by any of the PM extracts. Gene expression analysis revealed mild but coordinated induction of genes related to DNA damage response, and a strong induction of PAH-inducible genes, indicating activation of the aryl hydrocarbon receptor (AhR). Our data suggest that the addition of ethanol into the gasoline diminished the oxidative DNA damage, but no effect on other genotoxicity biomarkers was observed. Activated AhR may play an important role in the toxicity of gasoline PM emissions.

4.
Toxicol In Vitro ; 75: 105178, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33905840

RESUMEN

In vitro cell models offer a unique opportunity for conducting toxicology research, and the human lung adenocarcinoma cell line A549 is commonly used for toxicology testing strategies. It is essential to determine whether the response of these cells grown in different laboratories is consistent. In this study, A549 cells were grown under both submerged and air-liquid interface (ALI) conditions following an identical cell seeding protocol in two independent laboratories. The cells were switched to the ALI after four days of submerged growth, and their behaviour was compared to submerged conditions. The membrane integrity, cell viability, morphology, and (pro-)inflammatory response upon positive control stimuli were assessed at days 3, 5, and 7 under submerged conditions and at days 5, 7, and 10 at the ALI. Due to the high variability of the results between the two laboratories, the experiment was subsequently repeated using identical reagents at one specific time point and condition (day 5 at the ALI). Despite some variability, the results were more comparable, proving that the original protocol necessitated improvements. In conclusion, the use of detailed protocols and consumables from the same providers, special training of personnel for cell handling, and endpoint analysis are critical to obtain reproducible results across independent laboratories.


Asunto(s)
Técnicas de Cultivo de Célula , Células Epiteliales , Células A549 , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Laboratorios , Lipopolisacáridos/farmacología , Reproducibilidad de los Resultados , Factor de Necrosis Tumoral alfa/farmacología
6.
Artículo en Inglés | MEDLINE | ID: mdl-32974315

RESUMEN

A large number of prevalent lung diseases is associated with tissue inflammation. Clinically, corticosteroid therapies are applied systemically or via inhalation for the treatment of lung inflammation, and a number of novel therapies are being developed that require preclinical testing. In alveoli, macrophages and dendritic cells play a key role in initiating and diminishing pro-inflammatory reactions and, in particular, macrophage plasticity (M1 and M2 phenotypes shifts) has been reported to play a significant role in these reactions. Thus far, no studies with in vitro lung epithelial models have tested the comparison between systemic and direct pulmonary drug delivery. Therefore, the aim of this study was to develop an inflamed human alveolar epithelium model and to test the resolution of LPS-induced inflammation in vitro with a corticosteroid, methylprednisolone (MP). A specific focus of the study was the macrophage phenotype shifts in response to these stimuli. First, human monocyte-derived macrophages were examined for phenotype shifts upon exposure to lipopolysaccharide (LPS), followed by treatment with MP. A multicellular human alveolar model, composed of macrophages, dendritic cells, and epithelial cells, was then employed for the development of inflamed models. The models were used to test the anti-inflammatory potency of MP by monitoring the secretion of pro-inflammatory mediators (interleukin [IL]-8, tumor necrosis factor-α [TNF-α], and IL-1ß) through four different approaches, mimicking clinical scenarios of inflammation and treatment. In macrophage monocultures, LPS stimulation shifted the phenotype towards M1, as demonstrated by increased release of IL-8 and TNF-α and altered expression of phenotype-associated surface markers (CD86, CD206). MP treatment of inflamed macrophages reversed the phenotype towards M2. In multicellular models, increased pro-inflammatory reactions after LPS exposure were observed, as demonstrated by protein secretion and gene expression measurements. In all scenarios, among the tested mediators the most pronounced anti-inflammatory effect of MP was observed for IL-8. Our findings demonstrate that our inflamed multicellular human lung model is a promising tool for the evaluation of anti-inflammatory potency of drug candidates in vitro. With the presented setup, our model allows a meaningful comparison of the systemic vs. inhalation administration routes for the evaluation of the efficacy of a drug in vitro.

7.
Nanoscale ; 12(33): 17362-17372, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32789375

RESUMEN

Evaluating nanomaterial uptake and association by cells is relevant for in vitro studies related to safe-by-design approaches, nanomedicine or applications in photothermal therapy. However, standard analytical techniques are time-consuming, involve complex sample preparation or include labelling of the investigated sample system with e.g. fluorescent dyes. Here, we explore lock-in thermography to analyse and compare the association trends of epithelial cells, mesothelial cells, and macrophages exposed to gold nanoparticles and multi-walled carbon nanotubes over 24 h. The presence of nanomaterials in the cells was confirmed by dark field and transmission electron microscopy. The results obtained by lock-in thermography for gold nanoparticles were validated with inductively coupled plasma optical emission spectrometry; with data collected showing a good agreement between both techniques. Furthermore, we demonstrate the detection and quantification of carbon nanotube-cell association in a straightforward, non-destructive, and non-intrusive manner without the need to label the carbon nanotubes. Our results display the first approach in utilizing thermography to assess the carbon nanotube amount in cellular environments.


Asunto(s)
Nanopartículas del Metal , Nanotubos de Carbono , Oro , Macrófagos , Microscopía Electrónica de Transmisión
8.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727099

RESUMEN

In vitro three-dimensional (3D) lung cell models have been thoroughly investigated in recent years and provide a reliable tool to assess the hazard associated with nanomaterials (NMs) released into the air. In this study, a 3D lung co-culture model was optimized to assess the hazard potential of multiwalled carbon nanotubes (MWCNTs), which is known to provoke inflammation and fibrosis, critical adverse outcomes linked to acute and prolonged NM exposure. The lung co-cultures were exposed to MWCNTs at the air-liquid interface (ALI) using the VITROCELL® Cloud system while considering realistic occupational exposure doses. The co-culture model was composed of three human cell lines: alveolar epithelial cells (A549), fibroblasts (MRC-5), and macrophages (differentiated THP-1). The model was exposed to two types of MWCNTs (Mitsui-7 and Nanocyl) at different concentrations (2-10 µg/cm2) to assess the proinflammatory as well as the profibrotic responses after acute (24 h, one exposure) and prolonged (96 h, repeated exposures) exposure cycles. The results showed that acute or prolonged exposure to different concentrations of the tested MWCNTs did not induce cytotoxicity or apparent profibrotic response; however, suggested the onset of proinflammatory response.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Fibroblastos/metabolismo , Macrófagos Alveolares/metabolismo , Modelos Biológicos , Nanotubos de Carbono/efectos adversos , Células A549 , Aerosoles , Células Epiteliales Alveolares/patología , Fibroblastos/patología , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Macrófagos Alveolares/patología , Células THP-1
9.
J Vis Exp ; (159)2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32449722

RESUMEN

A human alveolar cell coculture model is described here for simulation of the alveolar epithelial tissue barrier composed of alveolar epithelial type II cells and two types of immune cells (i.e., human monocyte-derived macrophages [MDMs] and dendritic cells [MDDCs]). A protocol for assembling the multicellular model is provided. Alveolar epithelial cells (A549 cell line) are grown and differentiated under submerged conditions on permeable inserts in two-chamber wells, then combined with differentiated MDMs and MDDCs. Finally, the cells are exposed to an air-liquid interface for several days. As human primary immune cells need to be isolated from human buffy coats, immune cells differentiated from either fresh or thawed monocytes are compared in order to tailor the method based on experimental needs. The three-dimensional models, composed of alveolar cells with either freshly isolated or thawed monocyte-derived immune cells, show a statistically significant increase in cytokine (interleukins 6 and 8) release upon exposure to proinflammatory stimuli (lipopolysaccharide and tumor necrosis factor α) compared to untreated cells. On the other hand, there is no statistically significant difference between the cytokine release observed in the cocultures. This shows that the presented model is responsive to proinflammatory stimuli in the presence of MDMs and MDDCs differentiated from fresh or thawed peripheral blood monocytes (PBMs). Thus, it is a powerful tool for investigations of acute biological response to different substances, including aerosolized drugs or nanomaterials.


Asunto(s)
Células Epiteliales Alveolares/citología , Células Epiteliales/citología , Macrófagos/citología , Modelos Biológicos , Células A549 , Células Epiteliales Alveolares/metabolismo , Recuento de Células , Muerte Celular , Diferenciación Celular , Proliferación Celular , Forma de la Célula , Técnicas de Cocultivo , Congelación , Humanos , Mediadores de Inflamación/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Monocitos/citología
10.
ACS Nano ; 14(4): 3941-3956, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167743

RESUMEN

Expansion in production and commercial use of nanomaterials increases the potential human exposure during the lifecycle of these materials (production, use, and disposal). Inhalation is a primary route of exposure to nanomaterials; therefore it is critical to assess their potential respiratory hazard. Herein, we developed a three-dimensional alveolar model (EpiAlveolar) consisting of human primary alveolar epithelial cells, fibroblasts, and endothelial cells, with or without macrophages for predicting long-term responses to aerosols. Following thorough characterization of the model, proinflammatory and profibrotic responses based on the adverse outcome pathway concept for lung fibrosis were assessed upon repeated subchronic exposures (up to 21 days) to two types of multiwalled carbon nanotubes (MWCNTs) and silica quartz particles. We simulate occupational exposure doses for the MWCNTs (1-30 µg/cm2) using an air-liquid interface exposure device (VITROCELL Cloud) with repeated exposures over 3 weeks. Specific key events leading to lung fibrosis, such as barrier integrity and release of proinflammatory and profibrotic markers, show the responsiveness of the model. Nanocyl induced, in general, a less pronounced reaction than Mitsui-7, and the cultures with human monocyte-derived macrophages (MDMs) showed the proinflammatory response at later time points than those without MDMs. In conclusion, we present a robust alveolar model to predict inflammatory and fibrotic responses upon exposure to MWCNTs.

11.
Expert Opin Drug Deliv ; 17(4): 463-478, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32057260

RESUMEN

Introduction: Pulmonary drug delivery is a complex field of research combining physics which drive aerosol transport and deposition and biology which underpins efficacy and toxicity of inhaled drugs. A myriad of preclinical methods, ranging from in-silico to in-vitro, ex-vivo and in-vivo, can be implemented.Areas covered: The present review covers in-silico mathematical and computational fluid dynamics modelization of aerosol deposition, cascade impactor technology to estimated drug delivery and deposition, advanced in-vitro cell culture methods and associated aerosol exposure, lung-on-chip technology, ex-vivo modeling, in-vivo inhaled drug delivery, lung imaging, and longitudinal pharmacokinetic analysis.Expert opinion: No single preclinical model can be advocated; all methods are fundamentally complementary and should be implemented based on benefits and drawbacks to answer specific scientific questions. The overall best scientific strategy depends, among others, on the product under investigations, inhalation device design, disease of interest, clinical patient population, previous knowledge. Preclinical testing is not to be separated from clinical evaluation, as small proof-of-concept clinical studies or conversely large-scale clinical big data may inform preclinical testing. The extend of expertise required for such translational research is unlikely to be found in one single laboratory calling for the setup of multinational large-scale research consortiums.


Asunto(s)
Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Pulmón/metabolismo , Modelos Biológicos , Administración por Inhalación , Animales , Humanos , Hidrodinámica , Técnicas In Vitro , Modelos Animales
12.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835823

RESUMEN

The overt hazard of carbon nanotubes (CNTs) is often assessed using in vitro methods, but determining a dose-response relationship is still a challenge due to the analytical difficulty of quantifying the dose delivered to cells. An approach to accurately quantify CNT doses for submerged in vitro adherent cell culture systems using UV-VIS-near-infrared (NIR) spectroscopy is provided here. Two types of multi-walled CNTs (MWCNTs), Mitsui-7 and Nanocyl, which are dispersed in protein rich cell culture media, are studied as tested materials. Post 48 h of CNT incubation, the cellular fractions are subjected to microwave-assisted acid digestion/oxidation treatment, which eliminates biological matrix interference and improves CNT colloidal stability. The retrieved oxidized CNTs are analyzed and quantified using UV-VIS-NIR spectroscopy. In vitro imaging and quantification data in the presence of human lung epithelial cells (A549) confirm that up to 85% of Mitsui-7 and 48% for Nanocyl sediment interact (either through internalization or adherence) with cells during the 48 h of incubation. This finding is further confirmed using a sedimentation approach to estimate the delivered dose by measuring the depletion profile of the CNTs.

13.
Biointerphases ; 13(6): 06D404, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30205690

RESUMEN

Inhalation of combustion-derived ultrafine particles (≤0.1 µm) has been found to be associated with pulmonary and cardiovascular diseases. However, correlation of the physicochemical properties of carbon-based particles such as surface charge and agglomeration state with adverse health effects has not yet been established, mainly due to limitations related to the detection of carbon particles in biological environments. The authors have therefore applied model particles as mimics of simplified particles derived from incomplete combustion, namely, carbon nanodots (CNDs) with different surface modifications and fluorescent properties. Their possible adverse cellular effects and their biodistribution pattern were assessed in a three-dimensional (3D) lung epithelial tissue model. Three different CNDs, namely, nitrogen, sulfur codoped CNDs ( N,S-CNDs) and nitrogen doped CNDs ( N-CNDs-1 and N-CNDs-2), were prepared by microwave-assisted hydrothermal carbonization using different precursors or different microwave systems. These CNDs were found to possess different chemical and photophysical properties. The surfaces of nanodots N-CNDs-1 and N-CNDs-2 were positively charged or neutral, respectively, arguably due to the presence of amine and amide groups, while the surfaces of N,S-CNDs were negatively charged, as they bear carboxylic groups in addition to amine and amide groups. Photophysical measurements showed that these three types of CNDs displayed strong photon absorption in the UV range. Both N-CNDs-1 and N,S-CNDs showed weak fluorescence emission, whereas N-CNDs-2 showed intense emission. A 3D human lung model composed of alveolar epithelial cells (A549 cell line) and two primary immune cells, i.e., macrophages and dendritic cells, was exposed to CNDs via a pseudo-air-liquid interface at a concentration of 100 µg/ml. Exposure to these particles for 24 h induced no harmful effect on the cells as assessed by cytotoxicity, cell layer integrity, cell morphology, oxidative stress, and proinflammatory cytokines release. The distribution of the CNDs in the lung model was estimated by measuring the fluorescence intensity in three different fractions, e.g., apical, intracellular, and basal, after 1, 4, and 24 h of incubation, whereby reliable results were only obtained for N-CNDs-2. It was shown that N-CNDs-2 translocate rapidly, i.e., >40% in the basal fraction within 1 h and almost 100% after 4 h, while ca. 80% of the N-CNDs-1 and N,S-CNDs were still located on the apical surface of the lung cells after 1 h. This could be attributed to the agglomeration behavior of N-CNDs-1 or N,S-CNDs. The surface properties of the N-CNDs bearing amino and amide groups likely induce greater uptake as N-CNDs could be detected intracellularly. This was less evident for N,S-CNDs, which bear carboxylic acid groups on their surface. In conclusion, CNDs have been designed as model systems for carbon-based particles; however, their small size and agglomeration behavior made their quantification by fluorescence measurement challenging. Nevertheless, it was demonstrated that the surface properties and agglomeration affected the biodistribution of the particles at the lung epithelial barrier in vitro.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Carbono/metabolismo , Epitelio/metabolismo , Nanoestructuras/química , Lesión por Inhalación de Humo/patología , Células Epiteliales Alveolares/efectos de los fármacos , Transporte Biológico , Carbono/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fenómenos Químicos , Técnicas de Cocultivo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Fluorometría , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Modelos Biológicos , Nanoestructuras/toxicidad , Técnicas de Cultivo de Órganos
14.
Arch Toxicol ; 92(7): 2339-2351, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29748788

RESUMEN

Wear particles from automotive friction brake pads of various sizes, morphology, and chemical composition are significant contributors towards particulate matter. Knowledge concerning the potential adverse effects following inhalation exposure to brake wear debris is limited. Our aim was, therefore, to generate brake wear particles released from commercial low-metallic and non-asbestos organic automotive brake pads used in mid-size passenger cars by a full-scale brake dynamometer with an environmental chamber simulating urban driving and to deduce their potential hazard in vitro. The collected fractions were analysed using scanning electron microscopy via energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman microspectroscopy. The biological impact of the samples was investigated using a human 3D multicellular model consisting of human epithelial cells (A549) and human primary immune cells (macrophages and dendritic cells) mimicking the human epithelial tissue barrier. The viability, morphology, oxidative stress, and (pro-)inflammatory response of the cells were assessed following 24 h exposure to ~ 12, ~ 24, and ~ 48 µg/cm2 of non-airborne samples and to ~ 3.7 µg/cm2 of different brake wear size fractions (2-4, 1-2, and 0.25-1 µm) applying a pseudo-air-liquid interface approach. Brake wear debris with low-metallic formula does not induce any adverse biological effects to the in vitro lung multicellular model. Brake wear particles from non-asbestos organic formulated pads, however, induced increased (pro-)inflammatory mediator release from the same in vitro system. The latter finding can be attributed to the different particle compositions, specifically the presence of anatase.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Citocinas/metabolismo , Pulmón/efectos de los fármacos , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Células A549 , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Humanos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/ultraestructura , Vehículos a Motor , Tamaño de la Partícula , Propiedades de Superficie
15.
J Nanobiotechnology ; 15(1): 58, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830490

RESUMEN

BACKGROUND: LiCoO2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 °C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO2 (HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li+) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. RESULTS: Several new single source precursors containing lithium (Li+) and cobalt (Co2+) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 °C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our LiCoO2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. CONCLUSIONS: Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO2 have faster kinetics for Li+ insertion/extraction compared to microparticles. Overall, nano-sized LiCoO2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles.


Asunto(s)
Cobalto/química , Electroquímica/métodos , Litio/química , Nanopartículas/química , Óxidos/química , Células A549 , Cationes Monovalentes , Quimiocinas/análisis , Cobalto/toxicidad , Citocinas/análisis , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Suministros de Energía Eléctrica , Electrodos , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Óxidos/toxicidad , Tamaño de la Partícula
16.
ACS Nano ; 11(8): 7615-7625, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28505409

RESUMEN

Although acute pulmonary toxicity of carbon nanotubes (CNTs) has been extensively investigated, the knowledge of potential health effects following chronic occupational exposure is currently limited and based only upon in vivo approaches. Our aim was to realistically mimic subchronic inhalation of multiwalled CNTs (MWCNTs) in vitro, using the air-liquid interface cell exposure (ALICE) system for aerosol exposures on reconstituted human bronchial tissue from healthy and asthmatic donors. The reliability and sensitivity of the system were validated using crystalline quartz (DQ12), which elicited an increased (pro-)inflammatory response, as reported in vivo. At the administrated MWCNT doses relevant to human occupational lifetime exposure (10 µg/cm2 for 5 weeks of repeated exposures/5 days per week) elevated cilia beating frequency (in both epithelial cultures), and mucociliary clearance (in asthmatic cells only) occurred, whereas no cytotoxic reactions or morphological changes were observed. However, chronic MWCNT exposure did induce an evident (pro-)inflammatory and oxidative stress response in both healthy and asthmatic cells. The latter revealed stronger and more durable long-term effects compared to healthy cells, indicating that individuals with asthma may be more susceptible to adverse effects from chronic MWCNT exposure. Our results highlight the power of occupationally relevant subchronic exposures on human in vitro models in nanosafety hazard assessment.


Asunto(s)
Aerosoles/toxicidad , Asma/metabolismo , Asma/patología , Bronquios/citología , Bronquios/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Cilios/efectos de los fármacos , Humanos , Técnicas In Vitro , Administración de la Seguridad
17.
Part Fibre Toxicol ; 13(1): 67, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27955700

RESUMEN

BACKGROUND: There are justifiable health concerns regarding the potential adverse effects associated with human exposure to volcanic ash (VA) particles, especially when considering communities living in urban areas already exposed to heightened air pollution. The aim of this study was, therefore, to gain an imperative, first understanding of the biological impacts of respirable VA when exposed concomitantly with diesel particles. METHODS: A sophisticated in vitro 3D triple cell co-culture model of the human alveolar epithelial tissue barrier was exposed to either a single or repeated dose of dry respirable VA (deposited dose of 0.26 ± 0.09 or 0.89 ± 0.29 µg/cm2, respectively) from Soufrière Hills volcano, Montserrat for a period of 24 h at the air-liquid interface (ALI). Subsequently, co-cultures were exposed to co-exposures of single or repeated VA and diesel exhaust particles (DEP; NIST SRM 2975; 0.02 mg/mL), a model urban pollutant, at the pseudo-ALI. The biological impact of each individual particle type was also analysed under these precise scenarios. The cytotoxic (LDH release), oxidative stress (depletion of intracellular GSH) and (pro-)inflammatory (TNF-α, IL-8 and IL-1ß) responses were assessed after the particulate exposures. The impact of VA exposure upon cell morphology, as well as its interaction with the multicellular model, was visualised via confocal laser scanning microscopy (LSM) and scanning electron microscopy (SEM), respectively. RESULTS: The combination of respirable VA and DEP, in all scenarios, incited an heightened release of TNF-α and IL-8 as well as significant increases in IL-1ß, when applied at sub-lethal doses to the co-culture compared to VA exposure alone. Notably, the augmented (pro-)inflammatory responses observed were not mediated by oxidative stress. LSM supported the quantitative assessment of cytotoxicity, with no changes in cell morphology within the barrier model evident. A direct interaction of the VA with all three cell types of the multicellular system was observed by SEM. CONCLUSIONS: Combined exposure of respirable Soufrière Hills VA with DEP causes a (pro-)inflammatory effect in an advanced in vitro multicellular model of the epithelial airway barrier. This finding suggests that the combined exposure to volcanic and urban particulate matter should be further investigated in order to deduce the potential human health hazard, especially how it may influence the respiratory function of susceptible individuals (i.e. with pre-existing lung diseases) in the population.


Asunto(s)
Exposición a Riesgos Ambientales , Alveolos Pulmonares/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Erupciones Volcánicas , Técnicas de Cocultivo , Humanos , Técnicas In Vitro , Alveolos Pulmonares/citología
18.
J Breath Res ; 10(1): 016004, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26828137

RESUMEN

Markers of oxidative stress and inflammation were analysed in the exhaled breath condensate (EBC) and urine samples of 14 workers (mean age 43 ± 7 years) exposed to iron oxide aerosol for an average of 10 ± 4 years and 14 controls (mean age 39 ± 4 years) by liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry (LC-ESI-MS/MS) after solid-phase extraction. Aerosol exposure in the workplace was measured by particle size spectrometers, a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), and by aerosol concentration monitors, P-TRAK and DustTRAK DRX. Total aerosol concentrations in workplace locations varied greatly in both time and space. The median mass concentration was 0.083 mg m(-3) (IQR 0.063-0.133 mg m(-3)) and the median particle concentration was 66 800 particles cm(-3) (IQR 16,900-86,900 particles cm(-3)). In addition, more than 80% of particles were smaller than 100 nm in diameter. Markers of oxidative stress, malondialdehyde (MDA), 4-hydroxy-trans-hexenale (HHE), 4-hydroxy-trans-nonenale (HNE), 8-isoProstaglandin F2α (8-isoprostane) and aldehydes C6-C12, in addition to markers of nucleic acid oxidation, including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU), and of proteins, such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr) were analysed in EBC and urine by LC-ESI-MS/MS. Almost all markers of lipid, nucleic acid and protein oxidation were elevated in the EBC of workers comparing with control subjects. Elevated markers were MDA, HNE, HHE, C6-C10, 8-isoprostane, 8-OHdG, 8-OHG, 5-OHMeU, 3-ClTyr, 3-NOTyr, o-Tyr (all p < 0.001), and C11 (p < 0.05). Only aldehyde C12 and the pH of samples did not differ between groups. Markers in urine were not elevated. These findings suggest the adverse effects of nano iron oxide aerosol exposure and support the utility of oxidative stress biomarkers in EBC. The analysis of urine oxidative stress biomarkers does not support the presence of systemic oxidative stress in iron oxide pigment production workers.


Asunto(s)
Compuestos Férricos/síntesis química , Nanopartículas/toxicidad , Estrés Oxidativo/fisiología , Adulto , Aldehídos/análisis , Biomarcadores/análisis , Pruebas Respiratorias , Dinoprost/análogos & derivados , Dinoprost/análisis , Guanosina/análogos & derivados , Guanosina/análisis , Humanos , Masculino , Malondialdehído/análisis , Persona de Mediana Edad , Estrés Oxidativo/efectos de los fármacos , Espectrometría de Masas en Tándem , Tirosina/análogos & derivados , Tirosina/análisis
19.
J Breath Res ; 9(3): 036008, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26172946

RESUMEN

The health effects of engineered nanoparticles in humans are not well-understood; however experimental data support the theory of oxidative stress promoting fibrogenesis and carcinogenicity. The aim of this study was to detect TiO2 particles in exhaled breath condensate (EBC) and urine samples to ascertain their presence and potential persistence and excretion in urine.EBC and urine samples were collected from 20 workers exposed to TiO2 aerosol; among them, 16 had a higher risk level of exposure (production workers) and four had medium risk level (research workers); in addition to 20 controls. Titanium levels in EBC and urine were analysed using the inductively coupled plasma mass spectrometry (ICP-MS) method. A Raman microspectroscopic analysis was performed in EBC and urine to identify the phase composition of TiO2 particles observed. Aerosol exposure in the workplaces was measured using SMPS and APS spectrometers and P-TRAK and DustTRAK DRX monitors.The median concentration of TiO2 aerosol was 1.98 × 10(4) particles cm(-3), the interquartile range (IQR) was 1.50 × 10(4) - 3.01 × 10(4) particles cm(-3) and the median mass concentration was 0.65 mg m(-3) (IQR 0.46-.0.83 mg m(-3)); 70-82% of the particles were smaller than 100 nm in diameter. In any part of the plant, the median TiO2 air concentration did not exceed the national airborne exposure limit of 10 mg m(-3) for inert dust. Particles of rutile and/or anatase were found in the EBC of exposed workers in 8/20 (40%) of the pre-shift and 14/20 (70%) of the post-shift samples. In the urine of workers, TiO2 particles were detected in 2/20 post-shift urine samples only. The mean concentration of titanium in the EBC in production workers was 24.1 ± 1.8 µg/l. In the research workers the values were below the limit of quantitation; LOQ = 4.0 ± 0.2 µg/l), as well as in the controls. In the urine samples of all of the subjects, titanium was under the limit of detection (LOD = 1.2 µg/l). Raman microanalysis of EBC in the workers confirmed the presence of TiO2 anatase and/or rutile crystal phases in the pre-shift samples and their persistence from previous shifts in the workers.


Asunto(s)
Exposición Profesional , Titanio/análisis , Adulto , Pruebas Respiratorias , Estudios Transversales , Espiración , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Espectrometría Raman/métodos , Titanio/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...