Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37790385

RESUMEN

Wildland fires have become progressively more extensive over the past 30 years in the US, and now routinely generate smoke that deteriorates air quality for most of the country. We explored the neurometabolomic impact that smoke derived from biomass has on older (18 months) female C57BL/6J mice, both acutely and after 10 weeks of recovery from exposures. Mice (N=6/group) were exposed to wood smoke (WS) 4 hours/day, every other day, for 2 weeks (7 exposures total) to an average concentration of 0.448mg/m 3 per exposure. One group was euthanized 24 hours after the last exposure. Other groups were then placed on 1 of 4 treatment regimens for 10 weeks after wood smoke exposures: vehicle; resveratrol in chow plus nicotinamide mononucleotide in water (RNMN); senolytics via gavage (dasatanib+quercetin; DQ); or both RNMN with DQ (RNDQ). Among the findings, the aging from 18 months to 21 months was associated with the greatest metabolic shift, including changes in nicotinamide metabolism, with WS exposure effects that were relatively modest. WS caused a reduction in NAD+ within the prefrontal cortex immediately after exposure and a long-term reduction in serotonin that persisted for 10 weeks. The serotonin reductions were corroborated by forced swim tests, which revealed an increased immobility (reduction in motivation) immediately post-exposure and persisted for 10 weeks. RNMN had the most beneficial effects after WS exposure, while RNDQ caused markers of brain aging to be upregulated within WS-exposed mice. Findings highlight the persistent neurometabolomic and behavioral effects of woodsmoke exposure in an aged mouse model. Significance Statement: Neurological impacts of wildfire smoke are largely underexplored but include neuroinflammation and metabolic changes. The present study highlights modulation of major metabolites in the prefrontal cortex and behavioral consequences in aged (18 month) female mice that persists 10 weeks after wood smoke exposure ended. Supplements derived from the anti-aging field were able to mitigate much of the woodsmoke effect, especially a combination of resveratrol and nicotinamide mononucleotide.

2.
J Neuroinflammation ; 20(1): 192, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608305

RESUMEN

Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the temporal dynamics of neuroinflammation and metabolomics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6 J mice were exposed to wood smoke every other day for 2 weeks at an average exposure concentration of 0.5 mg/m3. Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-day post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of CD31Hi and CD31Med expressors, with wood smoke inhalation causing an increased proportion of CD31Hi. These populations of CD31Hi and CD31Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b+/CD45low) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules, such as glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD+ metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD+ abundance on day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated with wildfire smoke exposure.


Asunto(s)
NAD , Enfermedades Neuroinflamatorias , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Biomasa , Hipocampo , Ácido Glutámico , Metabolómica , Humo/efectos adversos
3.
Res Sq ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333410

RESUMEN

Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the neuroinflammatory and metabolomic temporal dynamics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6J mice were exposed to wood smoke every other day for two weeks at an average exposure concentration of 0.5mg/m 3 . Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-days post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of PECAM (CD31), high and medium expressors, with wood smoke inhalation causing an increased proportion of PECAM Hi . These populations of PECAM Hi and PECAM Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b + /CD45 low ) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules like glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD + metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD + abundance at day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated wtith wildfire smoke exposure.

4.
Vaccine ; 28(49): 7748-56, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20920572

RESUMEN

Passive transfer models were developed to evaluate the ability of antibodies generated in cynomolgus macaques and humans vaccinated with a recombinant plague vaccine (rF1V) to protect naïve Swiss Webster mice against pneumonic plague. Development of the passive transfer model is intended to support clinical and nonclinical development of the rF1V vaccine. To evaluate protection, unfractionated serum collected from rF1V vaccinated cynomolgus macaques and human volunteers with known antibody titers to rF1, rV and rF1V was transferred into naïve Swiss Webster mice via the intraperitoneal route. Results of these studies demonstrated that passive immunization protected mice from challenge or extended mean survival time and that the passive transfer assay can be used to evaluate the functional role of antibodies induced by rF1V vaccination in protection against aerosol exposure.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Inmunización Pasiva , Vacuna contra la Peste/inmunología , Peste/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunidad Humoral , Macaca fascicularis , Ratones , Peste/inmunología , Análisis de Supervivencia , Vacunas Sintéticas/inmunología , Yersinia pestis/inmunología
5.
Comp Med ; 58(1): 68-75, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19793459

RESUMEN

Since the anthrax attacks of 2001, the emphasis on developing animal models of aerosolized select agent pathogens has increased. Many scientists believe that nonhuman primate models are the most appropriate to evaluate pulmonary response to, vaccines for, and treatments for select agents such as Yersinia pestis (Y. pestis), the causative agent of plague. A recent symposium concluded that the cynomolgus macaque (Macaca fascicularis) plague model should be characterized more fully. To date, a well-characterized cynomolgus macaque model of pneumonic plague using reproducible bioaerosols of viable Y. pestis has not been published. In the current study, methods for creating reproducible bioaerosols of viable Y. pestis strain CO92 (YpCO92) and pneumonic plague models were evaluated in 22 Indonesian-origin cynomolgus macaques. Five macaques exposed to doses lower than 250 CFU remained free of any indication of plague infection. Fifteen macaques developed fever, lethargy, and anorexia indicative of clinical plague. The 2 remaining macaques died without overt clinical signs but were plague-positive on culture and demonstrated pathology consistent with plague. The lethal dose of plague in humans is reputedly less than 100 organisms; in this study, 66 CFU was the dose at which half of the macaques developed fever and clinical signs (ED(50)), The Indonesian cynomolgus macaque reproduces many aspects of human pneumonic plague and likely will provide an excellent model for studies that require a macaque model.


Asunto(s)
Vacunas Bacterianas/uso terapéutico , Macaca fascicularis/microbiología , Vacuna contra la Peste/uso terapéutico , Peste/microbiología , Peste/veterinaria , Yersinia pestis/patogenicidad , Aerosoles , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/toxicidad , Apetito/efectos de los fármacos , Vacunas Bacterianas/administración & dosificación , Temperatura Corporal/efectos de los fármacos , Chlorocebus aethiops/microbiología , Moduladores del GABA/farmacología , Moduladores del GABA/toxicidad , Macaca mulatta/microbiología , Actividad Motora/efectos de los fármacos , Peste/inmunología , Especificidad de la Especie , Tiletamina/farmacología , Tiletamina/toxicidad , Zolazepam/farmacología , Zolazepam/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...