Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Immunol ; 15: 1360281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633261

RESUMEN

Background: Mutation-derived neoantigens are critical targets for tumor rejection in cancer immunotherapy, and better tools for neoepitope identification and prediction are needed to improve neoepitope targeting strategies. Computational tools have enabled the identification of patient-specific neoantigen candidates from sequencing data, but limited data availability has hindered their capacity to predict which of the many neoepitopes will most likely give rise to T cell recognition. Method: To address this, we make use of experimentally validated T cell recognition towards 17,500 neoepitope candidates, with 467 being T cell recognized, across 70 cancer patients undergoing immunotherapy. Results: We evaluated 27 neoepitope characteristics, and created a random forest model, IMPROVE, to predict neoepitope immunogenicity. The presence of hydrophobic and aromatic residues in the peptide binding core were the most important features for predicting neoepitope immunogenicity. Conclusion: Overall, IMPROVE was found to significantly advance the identification of neoepitopes compared to other current methods.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Inmunoterapia/métodos
2.
Nat Commun ; 15(1): 661, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253617

RESUMEN

Understanding the nature and extent of non-canonical human leukocyte antigen (HLA) presentation in tumour cells is a priority for target antigen discovery for the development of next generation immunotherapies in cancer. We here employ a de novo mass spectrometric sequencing approach with a refined, MHC-centric analysis strategy to detect non-canonical MHC-associated peptides specific to cancer without any prior knowledge of the target sequence from genomic or RNA sequencing data. Our strategy integrates MHC binding rank, Average local confidence scores, and peptide Retention time prediction for improved de novo candidate Selection; culminating in the machine learning model MARS. We benchmark our model on a large synthetic peptide library dataset and reanalysis of a published dataset of high-quality non-canonical MHC-associated peptide identifications in human cancer. We achieve almost 2-fold improvement for high quality spectral assignments in comparison to de novo sequencing alone with an estimated accuracy of above 85.7% when integrated with a stepwise peptide sequence mapping strategy. Finally, we utilize MARS to detect and validate lncRNA-derived peptides in human cervical tumour resections, demonstrating its suitability to discover novel, immunogenic, non-canonical peptide sequences in primary tumour tissue.


Asunto(s)
Péptidos , Neoplasias del Cuello Uterino , Humanos , Femenino , Péptidos/genética , Neoplasias del Cuello Uterino/genética , Secuencia de Aminoácidos , Biblioteca de Péptidos , Benchmarking
3.
J Leukoc Biol ; 115(5): 913-925, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38214568

RESUMEN

The set of peptides processed and presented by major histocompatibility complex class II molecules defines the immunopeptidome, and its characterization holds keys to understanding essential properties of the immune system. High-throughput mass spectrometry (MS) techniques enable interrogation of the diversity and complexity of the immunopeptidome at an unprecedented scale. Here, we analyzed a large set of MS immunopeptidomics data from 40 donors, 221 samples, covering 30 unique HLA-DR molecules. We identified likely co-immunoprecipitated HLA-DR irrelevant contaminants using state-of-the-art prediction methods and unveiled novel light on the properties of HLA antigen processing and presentation. The ligandome (HLA binders) was enriched in 15-mer peptides, and the contaminome (nonbinders) in longer peptides. Classification of singletons and nested sets showed that the first were enriched in contaminants. Investigating the source protein location of ligands revealed that only contaminants shared a positional bias. Regarding subcellular localization, nested peptides were found to be predominantly of endolysosomal origin, whereas singletons shared an equal distribution between the cytosolic and endolysosomal origin. According to antigen-processing signatures, no significant differences were observed between the cytosolic and endolysosomal ligands. Further, the sensitivity of MS immunopeptidomics was investigated by analyzing overlap and saturation between biological MS replicas, concluding that at least 5 replicas are needed to identify 80% of the immunopeptidome. Moreover, the overlap in immunopeptidome between donors was found to be very low both in terms of peptides and source proteins, the latter indicating a critical HLA bias in the antigen sampling in the HLA antigen presentation. Finally, the complementarity between MS and in silico approaches for comprehensively sampling the immunopeptidome was demonstrated.


Asunto(s)
Presentación de Antígeno , Antígenos HLA-DR , Péptidos , Humanos , Antígenos HLA-DR/inmunología , Antígenos HLA-DR/metabolismo , Péptidos/inmunología , Presentación de Antígeno/inmunología , Ligandos , Espectrometría de Masas , Proteómica/métodos
4.
Bioinform Adv ; 3(1): vbad151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901344

RESUMEN

Motivation: Allergy is a pathological immune reaction towards innocuous protein antigens. Although only a narrow fraction of plant or animal proteins induce allergy, atopic disorders affect millions of children and adults and cost billions in healthcare systems worldwide. In silico predictors can aid in the development of more innocuous food sources. Previous allergenicity predictors used sequence similarity, common structural domains, and amino acid physicochemical features. However, these predictors strongly rely on sequence similarity to known allergens and fail to predict protein allergenicity accurately when similarity diminishes. Results: To overcome these limitations, we collected allergens from AllergenOnline, a curated database of IgE-inducing allergens, carefully removed allergen redundancy with a novel protein partitioning pipeline, and developed a new allergen prediction method, introducing MHC presentation propensity as a novel feature. NetAllergen outperformed a sequence similarity-based BLAST baseline approach, and previous allergenicity predictor AlgPred 2 when similarity to known allergens is limited. Availability and implementation: The web service NetAllergen and the datasets are available at https://services.healthtech.dtu.dk/services/NetAllergen-1.0/.

5.
Front Genet ; 14: 1058605, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035751

RESUMEN

Immune checkpoint inhibition for the treatment of cancer has provided a breakthrough in oncology, and several new checkpoint inhibition pathways are currently being investigated regarding their potential to provide additional clinical benefit. However, only a fraction of patients respond to such treatment modalities, and there is an urgent need to identify biomarkers to rationally select patients that will benefit from treatment. In this study, we explore different tumor associated characteristics for their association with favorable clinical outcome in a diverse cohort of cancer patients treated with checkpoint inhibitors. We studied 29 patients in a basket trial comprising 12 different tumor types, treated with 10 different checkpoint inhibition regimens. Our analysis revealed that even across this diverse cohort, patients achieving clinical benefit had significantly higher neoepitope load, higher expression of T cell signatures, and higher PD-L2 expression, which also correlated with improved progression-free and overall survival. Importantly, the combination of biomarkers serves as a better predictor than each of the biomarkers alone. Basket trials are frequently used in modern immunotherapy trial design, and here we identify a set of biomarkers of potential relevance across multiple cancer types, allowing for the selection of patients that most likely will benefit from immune checkpoint inhibition.

6.
Commun Biol ; 6(1): 442, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085710

RESUMEN

Human leukocyte antigen (HLA) class II antigen presentation is key for controlling and triggering T cell immune responses. HLA-DQ molecules, which are believed to play a major role in autoimmune diseases, are heterodimers that can be formed as both cis and trans variants depending on whether the α- and ß-chains are encoded on the same (cis) or opposite (trans) chromosomes. So far, limited progress has been made for predicting HLA-DQ antigen presentation. In addition, the contribution of trans-only variants (i.e. variants not observed in the population as cis) in shaping the HLA-DQ immunopeptidome remains largely unresolved. Here, we seek to address these issues by integrating state-of-the-art immunoinformatics data mining models with large volumes of high-quality HLA-DQ specific mass spectrometry immunopeptidomics data. The analysis demonstrates highly improved predictive power and molecular coverage for models trained including these novel HLA-DQ data. More importantly, investigating the role of trans-only HLA-DQ variants reveals a limited to no contribution to the overall HLA-DQ immunopeptidome. In conclusion, this study furthers our understanding of HLA-DQ specificities and casts light on the relative role of cis versus trans-only HLA-DQ variants in the HLA class II antigen presentation space. The developed method, NetMHCIIpan-4.2, is available at https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2 .


Asunto(s)
Enfermedades Autoinmunes , Antígenos HLA-DQ , Humanos , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/química , Antígenos HLA , Linfocitos T , Aprendizaje Automático
7.
Expert Rev Proteomics ; 19(2): 77-88, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35390265

RESUMEN

INTRODUCTION: The comprehensive collection of peptides presented by major histocompatibility complex (MHC) molecules on the cell surface is collectively known as the immunopeptidome. The analysis and interpretation of such data sets holds great promise for furthering our understanding of basic immunology and adaptive immune activation and regulation, and for direct rational discovery of T cell antigens and the design of T-cell-based therapeutics and vaccines. These applications are, however, challenged by the complex nature of immunopeptidome data. AREAS COVERED: Here, we describe the benefits and shortcomings of applying liquid chromatography-tandem mass spectrometry (MS) to obtain large-scale immunopeptidome data sets and illustrate how the accurate analysis and optimal interpretation of such data is reliant on the availability of refined and highly optimized machine learning approaches. EXPERT OPINION: Further, we demonstrate how the accuracy of immunoinformatics prediction methods within the field of MHC antigen presentation has benefited greatly from the availability of MS-immunopeptidomics data, and exemplify how optimal antigen discovery is best performed in a synergistic combination of MS experiments and such in silico models trained on large-scale immunopeptidomics data.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Espectrometría de Masas en Tándem , Presentación de Antígeno , Cromatografía Liquida , Humanos , Aprendizaje Automático
8.
Front Immunol ; 13: 835454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154160

RESUMEN

Mass spectrometry (MS) based immunopeptidomics is used in several biomedical applications including neo-epitope discovery in oncology, next-generation vaccine development and protein-drug immunogenicity assessment. Immunopeptidome data are highly complex given the expression of multiple HLA alleles on the cell membrane and presence of co-immunoprecipitated contaminants. The absence of tools that deal with these challenges effectively and guide the analysis and interpretation of this complex type of data is currently a major bottleneck for the large-scale application of this technique. To resolve this, we here present the MHCMotifDecon that benefits from state-of-the-art HLA class-I and class-II predictions to accurately deconvolute immunopeptidome datasets and assign individual ligands to the most likely HLA molecule, allowing to identify and characterize HLA binding motifs while discarding co-purified contaminants. We have benchmarked the tool against other state-of-the-art methods and illustrated its application on experimental datasets for HLA-DR demonstrating a previously underappreciated role for HLA-DRB3/4/5 molecules in defining HLA class II immune repertoires. With its ease of use, MHCMotifDecon can efficiently guide interpretation of immunopeptidome datasets, serving the discovery of novel T cell targets. MHCMotifDecon is available at https://services.healthtech.dtu.dk/service.php?MHCMotifDecon-1.0.


Asunto(s)
Epítopos de Linfocito T/inmunología , Antígenos HLA-DR/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Línea Celular , Bases de Datos de Proteínas , Humanos , Ligandos , Espectrometría de Masas , Péptidos/metabolismo , Unión Proteica
9.
Immunology ; 162(2): 208-219, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33010039

RESUMEN

Immunogenicity risk assessment is a critical element in protein drug development. Currently, the risk assessment is most often performed using MHC-associated peptide proteomics (MAPPs) and/or T-cell activation assays. However, this is a highly costly procedure that encompasses limited sensitivity imposed by sample sizes, the MHC repertoire of the tested donor cohort and the experimental procedures applied. Recent work has suggested that these techniques could be complemented by accurate, high-throughput and cost-effective prediction of in silico models. However, this work covered a very limited set of therapeutic proteins and eluted ligand (EL) data. Here, we resolved these limitations by showcasing, in a broader setting, the versatility of in silico models for assessment of protein drug immunogenicity. A method for prediction of MHC class II antigen presentation was developed on the hereto largest available mass spectrometry (MS) HLA-DR EL data set. Using independent test sets, the performance of the method for prediction of HLA-DR antigen presentation hotspots was benchmarked. In particular, the method was showcased on a set of protein sequences including four therapeutic proteins and demonstrated to accurately predict the experimental MS hotspot regions at a significantly lower false-positive rate compared with other methods. This gain in performance was particularly pronounced when compared to the NetMHCIIpan-3.2 method trained on binding affinity data. These results suggest that in silico methods trained on MS HLA EL data can effectively and accurately be used to complement MAPPs assays for the risk assessment of protein drugs.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos HLA-DR/inmunología , Proteínas/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Ligandos , Activación de Linfocitos/inmunología , Unión Proteica/inmunología , Proteómica/métodos , Medición de Riesgo
10.
Front Immunol ; 11: 1304, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655572

RESUMEN

Recombinant DNA technology has, in the last decades, contributed to a vast expansion of the use of protein drugs as pharmaceutical agents. However, such biological drugs can lead to the formation of anti-drug antibodies (ADAs) that may result in adverse effects, including allergic reactions and compromised therapeutic efficacy. Production of ADAs is most often associated with activation of CD4 T cell responses resulting from proteolysis of the biotherapeutic and loading of drug-specific peptides into major histocompatibility complex (MHC) class II on professional antigen-presenting cells. Recently, readouts from MHC-associated peptide proteomics (MAPPs) assays have been shown to correlate with the presence of CD4 T cell epitopes. However, the limited sensitivity of MAPPs challenges its use as an immunogenicity biomarker. In this work, MAPPs data was used to construct an artificial neural network (ANN) model for MHC class II antigen presentation. Using Infliximab and Rituximab as showcase stories, the model demonstrated an unprecedented performance for predicting MAPPs and CD4 T cell epitopes in the context of protein-drug immunogenicity, complementing results from MAPPs assays and outperforming conventional prediction models trained on binding affinity data.


Asunto(s)
Antirreumáticos/farmacología , Antígenos de Histocompatibilidad Clase II/inmunología , Infliximab/farmacología , Redes Neurales de la Computación , Rituximab/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos de Linfocito T/efectos de los fármacos , Epítopos de Linfocito T/inmunología , Humanos , Espectrometría de Masas , Péptidos/inmunología , Unión Proteica , Proteómica
11.
J Proteome Res ; 19(6): 2304-2315, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32308001

RESUMEN

Major histocompatibility complex II (MHC II) molecules play a vital role in the onset and control of cellular immunity. In a highly selective process, MHC II presents peptides derived from exogenous antigens on the surface of antigen-presenting cells for T cell scrutiny. Understanding the rules defining this presentation holds critical insights into the regulation and potential manipulation of the cellular immune system. Here, we apply the NNAlign_MA machine learning framework to analyze and integrate large-scale eluted MHC II ligand mass spectrometry (MS) data sets to advance prediction of CD4+ epitopes. NNAlign_MA allows integration of mixed data types, handling ligands with multiple potential allele annotations, encoding of ligand context, leveraging information between data sets, and has pan-specific power allowing accurate predictions outside the set of molecules included in the training data. Applying this framework, we identified accurate binding motifs of more than 50 MHC class II molecules described by MS data, particularly expanding coverage for DP and DQ beyond that obtained using current MS motif deconvolution techniques. Furthermore, in large-scale benchmarking, the final model termed NetMHCIIpan-4.0 demonstrated improved performance beyond current state-of-the-art predictors for ligand and CD4+ T cell epitope prediction. These results suggest that NNAlign_MA and NetMHCIIpan-4.0 are powerful tools for analysis of immunopeptidome MS data, prediction of T cell epitopes, and development of personalized immunotherapies.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Ligandos , Complejo Mayor de Histocompatibilidad , Espectrometría de Masas , Unión Proteica
12.
Mol Cell Proteomics ; 18(12): 2459-2477, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31578220

RESUMEN

The set of peptides presented on a cell's surface by MHC molecules is known as the immunopeptidome. Current mass spectrometry technologies allow for identification of large peptidomes, and studies have proven these data to be a rich source of information for learning the rules of MHC-mediated antigen presentation. Immunopeptidomes are usually poly-specific, containing multiple sequence motifs matching the MHC molecules expressed in the system under investigation. Motif deconvolution -the process of associating each ligand to its presenting MHC molecule(s)- is therefore a critical and challenging step in the analysis of MS-eluted MHC ligand data. Here, we describe NNAlign_MA, a computational method designed to address this challenge and fully benefit from large, poly-specific data sets of MS-eluted ligands. NNAlign_MA simultaneously performs the tasks of (1) clustering peptides into individual specificities; (2) automatic annotation of each cluster to an MHC molecule; and (3) training of a prediction model covering all MHCs present in the training set. NNAlign_MA was benchmarked on large and diverse data sets, covering class I and class II data. In all cases, the method was demonstrated to outperform state-of-the-art methods, effectively expanding the coverage of alleles for which accurate predictions can be made, resulting in improved identification of both eluted ligands and T-cell epitopes. Given its high flexibility and ease of use, we expect NNAlign_MA to serve as an effective tool to increase our understanding of the rules of MHC antigen presentation and guide the development of novel T-cell-based therapeutics.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Epítopos de Linfocito T/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Secuencias de Aminoácidos , Animales , Benchmarking , Bovinos , Línea Celular , Bases de Datos de Proteínas , Conjuntos de Datos como Asunto , Humanos , Ligandos , Aprendizaje Automático , Espectrometría de Masas , Péptidos/metabolismo , Unión Proteica
13.
Genome Med ; 10(1): 84, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446001

RESUMEN

BACKGROUND: Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing. METHODS: We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets. RESULTS: We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand. CONCLUSIONS: The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens.


Asunto(s)
Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Modelos Teóricos , Péptidos/metabolismo , Animales , Presentación de Antígeno , Línea Celular , Humanos , Ligandos , Ratones
14.
Front Immunol ; 9: 1007, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795801

RESUMEN

[This corrects the article on p. 1566 in vol. 8, PMID: 29187854.].

15.
Proteomics ; 18(12): e1700252, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29327813

RESUMEN

Recent advances in proteomics and mass-spectrometry have widely expanded the detectable peptide repertoire presented by major histocompatibility complex (MHC) molecules on the cell surface, collectively known as the immunopeptidome. Finely characterizing the immunopeptidome brings about important basic insights into the mechanisms of antigen presentation, but can also reveal promising targets for vaccine development and cancer immunotherapy. This report describes a number of practical and efficient approaches to analyze immunopeptidomics data, discussing the identification of meaningful sequence motifs in various scenarios and considering current limitations. Guidelines are provided for the filtering of false hits and contaminants, and to address the problem of motif deconvolution in cell lines expressing multiple MHC alleles, both for the MHC class I and class II systems. Finally, it is demonstrated how machine learning can be readily employed by non-expert users to generate accurate prediction models directly from mass-spectrometry eluted ligand data sets.


Asunto(s)
Secuencias de Aminoácidos/inmunología , Biología Computacional/métodos , Epítopos/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Fragmentos de Péptidos/metabolismo , Epítopos/análisis , Epítopos/inmunología , Antígenos de Histocompatibilidad Clase I/análisis , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/análisis , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/inmunología
16.
Front Immunol ; 8: 1566, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29187854

RESUMEN

Personalization of cancer immunotherapies such as therapeutic vaccines and adoptive T-cell therapy may benefit from efficient identification and targeting of patient-specific neoepitopes. However, current neoepitope prediction methods based on sequencing and predictions of epitope processing and presentation result in a low rate of validation, suggesting that the determinants of peptide immunogenicity are not well understood. We gathered published data on human neopeptides originating from single amino acid substitutions for which T cell reactivity had been experimentally tested, including both immunogenic and non-immunogenic neopeptides. Out of 1,948 neopeptide-HLA (human leukocyte antigen) combinations from 13 publications, 53 were reported to elicit a T cell response. From these data, we found an enrichment for responses among peptides of length 9. Even though the peptides had been pre-selected based on presumed likelihood of being immunogenic, we found using NetMHCpan-4.0 that immunogenic neopeptides were predicted to bind significantly more strongly to HLA compared to non-immunogenic peptides. Investigation of the HLA binding strength of the immunogenic peptides revealed that the vast majority (96%) shared very strong predicted binding to HLA and that the binding strength was comparable to that observed for pathogen-derived epitopes. Finally, we found that neopeptide dissimilarity to self is a predictor of immunogenicity in situations where neo- and normal peptides share comparable predicted binding strength. In conclusion, these results suggest new strategies for prioritization of mutated peptides, but new data will be needed to confirm their value.

17.
Nat Commun ; 7: 12846, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27667448

RESUMEN

Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over 70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures, 839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are unique and are manually validated for quality. Global analysis of these signatures confirms known associations and identifies novel associations between genes, diseases and drugs. The manually curated signatures are used as a training set to develop classifiers for extracting similar signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization.

19.
Acta Chim Slov ; 62(3): 662-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26454601

RESUMEN

Theoretical molecular structures of the complexes [PdCl(2)(HmPz)(2)] (1) and [PdCl(2)(HIPz)(2)] (2) (HmPz = 4-methylpyrazole; HIPz = 4-iodopyrazole) were studied using B3LYP/DFT method. The new complex 2 and the complex 1 were synthesized and characterized by elemental analysis and IR spectroscopy. The calculated bond distances and angles showed that both compounds exhibited a slightly distorted square planar coordination environment around the palladium center. The theoretical IR spectra of C(s) symmetry (electronic state 1A') of the complexes agree well with the experimental data.


Asunto(s)
Complejos de Coordinación/química , Modelos Moleculares , Paladio/química , Pirazoles/química , Fomepizol , Conformación Molecular , Teoría Cuántica , Vibración
20.
Nat Immunol ; 15(4): 354-364, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24562309

RESUMEN

Innate lymphoid cells (ILCs) regulate stromal cells, epithelial cells and cells of the immune system, but their effect on B cells remains unclear. Here we identified RORγt(+) ILCs near the marginal zone (MZ), a splenic compartment that contains innate-like B cells highly responsive to circulating T cell-independent (TI) antigens. Splenic ILCs established bidirectional crosstalk with MAdCAM-1(+) marginal reticular cells by providing tumor-necrosis factor (TNF) and lymphotoxin, and they stimulated MZ B cells via B cell-activation factor (BAFF), the ligand of the costimulatory receptor CD40 (CD40L) and the Notch ligand Delta-like 1 (DLL1). Splenic ILCs further helped MZ B cells and their plasma-cell progeny by coopting neutrophils through release of the cytokine GM-CSF. Consequently, depletion of ILCs impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune system and circulatory system.


Asunto(s)
Formación de Anticuerpos , Linfocitos B/inmunología , Linfocitos/inmunología , Células Plasmáticas/inmunología , Bazo/inmunología , Animales , Anticuerpos/sangre , Antígenos T-Independientes/inmunología , Proteínas Sanguíneas/inmunología , Moléculas de Adhesión Celular , Comunicación Celular/inmunología , Diferenciación Celular , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Inmunidad Innata , Inmunoglobulinas/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Mucoproteínas/metabolismo , Neutrófilos/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Picratos/inmunología , Transducción de Señal/inmunología , Células del Estroma/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...