Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 117(1): 76, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705910

RESUMEN

Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains-Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198-previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between Serratia sp. RJAL6 and its closest phylogenetic neighbours, Serratia nematodiphila and Serratia bockelmanii. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified Serratia species as a powerful bioinoculant in future agricultural settings.


Asunto(s)
Enterobacter , Genoma Bacteriano , Genómica , Ácidos Indolacéticos , Filogenia , Serratia , Microbiología del Suelo , Ácidos Indolacéticos/metabolismo , Serratia/genética , Serratia/aislamiento & purificación , Serratia/metabolismo , Serratia/clasificación , Enterobacter/genética , Enterobacter/aislamiento & purificación , Enterobacter/clasificación , Enterobacter/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Klebsiella/aislamiento & purificación , Klebsiella/clasificación , Desarrollo de la Planta , Suelo/química , Reguladores del Crecimiento de las Plantas/metabolismo
2.
iScience ; 26(10): 107910, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37790272

RESUMEN

Aluminum (Al)-tolerant phosphobacteria enhance plant growth in acidic soils by improving Al complexing and phosphorus (P) availability. However, the impact of Al stress and P deficiency on bacterial biochemistry and physiology remains unclear. We investigated the single and mutual effects of Al stress (10 mM) and P deficiency (0.05 mM) on the proteome of three aluminum-tolerant phosphobacteria: Enterobacter sp. 198, Enterobacter sp. RJAL6, and Klebsiella sp. RCJ4. Cultivated under varying conditions, P deficiency upregulated P metabolism proteins while Al exposure downregulated iron-sulfur and heme-containing proteins and upregulated iron acquisition proteins. This demonstrated that Al influence on iron homeostasis and bacterial central metabolism. This study offers crucial insights into bacterial behavior in acidic soils, benefiting the development of bioinoculants for crops facing Al toxicity and P deficiency. This investigation marks the first proteomic study on the interaction between high Al and P deficiency in acid soils-adapted bacteria.

3.
Microorganisms ; 11(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375102

RESUMEN

The present study examined the biosynthesis and characterization of selenium nanoparticles (SeNPs) using two contrasting endophytic selenobacteria, one Gram-positive (Bacillus sp. E5 identified as Bacillus paranthracis) and one Gram-negative (Enterobacter sp. EC5.2 identified as Enterobacter ludwigi), for further use as biofortifying agents and/or for other biotechnological purposes. We demonstrated that, upon regulating culture conditions and selenite exposure time, both strains were suitable "cell factories" for producing SeNPs (B-SeNPs from B. paranthracis and E-SeNPs from E. ludwigii) with different properties. Briefly, dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) studies revealed that intracellular E-SeNPs (56.23 ± 4.85 nm) were smaller in diameter than B-SeNPs (83.44 ± 2.90 nm) and that both formulations were located in the surrounding medium or bound to the cell wall. AFM images indicated the absence of relevant variations in bacterial volume and shape and revealed the existence of layers of peptidoglycan surrounding the bacterial cell wall under the conditions of biosynthesis, particularly in the case of B. paranthracis. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) showed that SeNPs were surrounded by the proteins, lipids, and polysaccharides of bacterial cells and that the numbers of the functional groups present in B-SeNPs were higher than in E-SeNPs. Thus, considering that these findings support the suitability of these two endophytic stains as potential biocatalysts to produce high-quality Se-based nanoparticles, our future efforts must be focused on the evaluation of their bioactivity, as well as on the determination of how the different features of each SeNP modulate their biological action and their stability.

4.
J Fungi (Basel) ; 9(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36983518

RESUMEN

One of the most challenging aspects of long-term research based on microorganisms is the maintenance of isolates under ex situ conditions, particularly the conservation of phytopathological characteristics. Our research group has worked for more than 10 years with Gaumannomyces graminis var. tritici (Ggt), the main biotic factor affecting wheat. In this sense we preserved the microorganisms in oil overlaid. However, several strains preserved for a long time lost their pathogenicity. These strains show white and non-infective mycelia. In this sense, we hypothesized that this is attributable to low melanin content. Melanin is a natural pigment mainly involved in UV protection, desiccation, salinity, oxidation, and fungal pathogenicity. Therefore, understanding the melanin role on Ggt pathogenicity is fundamental to developing melanin activation strategies under laboratory studies. In this study, we induce melanin activation by UV-A light chamber, 320 to 400 nm (T1) and temperature changes of 30 °C, 15 °C, and 20 °C (T2). Fungal pathogenicity was evaluated by determination of blackening roots and Ggt was quantified by real-time PCR in inoculated wheat plants. Results revealed that Ggt grown under UV-A (T1) conditions showed around 40% higher melanin level with a concomitant effect on root infection (98% of blackened roots) and 4-fold more Ggt genome copy number compared with the control (non-infective mycelia) being T1, a more inductor factor compared with T2. These findings would support the role of melanin in pathogenicity in darkly pigmented fungi such as Ggt and could serve as a basis for activating pathogenicity under laboratory conditions.

5.
Mar Drugs ; 21(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36976191

RESUMEN

Thraustochytrids are aquatic unicellular protists organisms that represent an important reservoir of a wide range of bioactive compounds, such as essential polyunsaturated fatty acids (PUFAs) such as arachidonic acid (ARA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), which are involved in the regulation of the immune system. In this study, we explore the use of co-cultures of Aurantiochytrium sp. and bacteria as a biotechnological tool capable of stimulating PUFA bioaccumulation. In particular, the co-culture of lactic acid bacteria and the protist Aurantiochytrium sp. T66 induce PUFA bioaccumulation, and the lipid profile was evaluated in cultures at different inoculation times, with two different strains of lactic acid bacteria capable of producing the tryptophan dependent auxins, and one strain of Azospirillum sp., as a reference for auxin production. Our results showed that the Lentilactobacillus kefiri K6.10 strain inoculated at 72 h gives the best PUFA content (30.89 mg g-1 biomass) measured at 144 h of culture, three times higher than the control (8.87 mg g-1 biomass). Co-culture can lead to the generation of complex biomasses with higher added value for developing aquafeed supplements.


Asunto(s)
Lactobacillales , Estramenopilos , Técnicas de Cocultivo , Ácidos Grasos Insaturados , Ácidos Docosahexaenoicos , Ácidos Grasos
6.
Biology (Basel) ; 10(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34827183

RESUMEN

The major priority of research in the present day is to conserve the environment by reducing GHG emissions. A proposed solution by an expert panel from 195 countries meeting at COP 21 was to increase global SOC stocks by 0.4% year-1 to compensate for GHG emissions, the '4 per 1000' agreement. In this context, the application of biocrusts is a promising framework with which to increase SOC and other soil functions in the soil-plant continuum. Despite the importance of biocrusts, their application to agriculture is limited due to: (1) competition with native microbiota, (2) difficulties in applying them on a large scale, (3) a lack of studies based on carbon (C) balance and suitable for model parameterization, and (4) a lack of studies evaluating the contribution of biocrust weathering to increase C sequestration. Considering these four challenges, we propose three perspectives for biocrust application: (1) natural microbiome engineering by a host plant, using biocrusts; (2) quantifying the contribution of biocrusts to C sequestration in soils; and (3) enhanced biocrust weathering to improve C sequestration. Thus, we focus this opinion article on new challenges by using the specialized microbiome of biocrusts to be applied in a new environment to counteract the negative effects of climate change.

7.
Biology (Basel) ; 10(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34571742

RESUMEN

Crop migration caused by climatic events has favored the emergence of new soilborne diseases, resulting in the colonization of new niches (emerging infectious diseases, EIDs). Soilborne pathogens are extremely persistent in the environment. This is in large part due to their ability to reside in the soil for a long time, even without a host plant, using survival several strategies. In this regard, disease-suppressive soils, characterized by a low disease incidence due to the presence of antagonist microorganisms, can be an excellent opportunity for the study mechanisms of soil-induced immunity, which can be applied in the development of a new generation of bioinoculants. Therefore, here we review the main effects of climate change on crops and pathogens, as well as the potential use of soil-suppressive microbiota as a natural source of biocontrol agents. Based on results of previous studies, we also propose a strategy for the optimization of microbiota assemblages, selected using a host-mediated approach. This process involves an increase in and prevalence of specific taxa during the transition from a conducive to a suppressive soil. This strategy could be used as a model to engineer microbiota assemblages for pathogen suppression, as well as for the reduction of abiotic stresses created due to global climate change.

8.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33036992

RESUMEN

Gaeumannomyces graminis var. tritici is a soilborne pathogen that causes "take-all" disease, affecting cereal roots. In wheat, G. graminis var. tritici is the most important biotic factor, causing around 30 to 50% losses of yield. Chemical control of this fungal disease is difficult because G. graminis var. tritici is able to reside for a long time in soils. Therefore, the development of environmentally friendly biotechnological strategies to diminish the incidence of soilborne diseases is highly desirable. Natural products are a promising strategy for biocontrol of plant pathogens. A special emphasis is on medicinal plants due to their reported fungitoxic effects. Drimys winteri (canelo) is a medicinal plant that is widely used by the Mapuche ethnic group from Chile due to its anti-inflammatory activity. In addition, inhibitory effects of canelo against phytopathogenic fungi and pest insects have been reported. In this study, we isolated, purified, and identified six drimane sesquiterpenoid compounds from canelo (drimenin, drimenol, polygodial, isodrimeninol, valdiviolide, and drimendiol). Then, we evaluated their antimicrobial effects against G. graminis var. tritici. Compounds were identified by comparing Fourier-transform infrared spectroscopy (FTIR) data and the retention time in thin-layer chromatography (TLC) with those of pure standards. The putative antagonistic effects were confirmed by assessing hyphal cell wall damage using confocal microscopy and lipid peroxidation. Here, we reported the high potential of drimane sesquiterpenoids as natural antifungals against G. graminis var. tritici. Polygodial and isodrimeninol were the most effective, with 50% lethal concentrations (LC50s) between 7 and 10 µg ml-1 and higher levels of fungal lipid peroxidation seen. Accordingly, natural sesquiterpenoids purified from canelo are biologically active against G. graminis var. tritici and could be used as natural biofungicides for sustainable agriculture.IMPORTANCE More than two billion tons of pesticides are used every year worldwide. An interesting sustainable alternative to control plant pathogens is the use of natural products obtained from plants, mainly medicinal plants that offer secondary metabolites important to human/animal health. In this study, we isolated and identified six pure drimane sesquiterpenoids obtained from the bark of Drimys winteri Additionally, we evaluated their antifungal activities against Gaeumannomyces graminis (the main biotic factor affecting cereal production, especially wheat) by assessing fungal cell wall damage and lipid peroxidation. The compounds obtained showed important antifungal properties against G. graminis var. tritici, mainly isodrimenol, which was the second-most-active compound after polygodial, with an LC50 against G. graminis var. tritici of around 9.5 µg ml-1 This information could be useful for the development of new natural or hemisynthetic antifungal agents against soilborne phytopathogens that could be used in green agriculture.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Drimys/química , Corteza de la Planta/química , Sesquiterpenos/farmacología , Pared Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Sesquiterpenos Policíclicos/farmacología
9.
Front Microbiol ; 9: 2198, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283421

RESUMEN

Gaeumannomyces graminis var. tritici (Ggt) is the main soilborne factor that affects wheat production around the world. Recently we reported the occurrence of six suppressive soils in monoculture areas from indigenous "Mapuche" communities, and evidenced that the suppression relied on the biotic component of those soils. Here, we compare the rhizosphere and endosphere microbial community structure (total bacteria, actinomycetes, total fungi, and ascomycetes) of wheat plants grown in suppressive and conducive soils. Our results suggested that Ggt suppression could be mediated mostly by bacterial endophytes, rather than rhizosphere microorganisms, since the community structure was similar in all suppressive soils as compared with conducive. Interestingly, we found that despite the lower incidence of take-all disease in suppressive soils, the Ggt concentration in roots was not significantly reduced in all suppressive soils compared to those growing in conducive soil. Therefore, the disease suppression is not always related to a reduction of the pathogen biomass. Furthermore, we isolated endophytic bacteria from wheat roots growing in suppressive soils. Among them we identified Serratia spp. and Enterobacter spp. able to inhibit Ggt growth in vitro. Since the disease, but not always pathogen amount, was reduced in the suppressive soils, we propose that take all disease suppressiveness is not only related to direct antagonism to the pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...