Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 627, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243729

RESUMEN

Alpine ecosystems represent varied climates and vegetation structures globally, with the potential to support rich and functionally diverse avian communities. High mountain habitats and species are under significant threat from climate change and other anthropogenic factors. Yet, no global database of alpine birds exists, with most mountain systems lacking basic information on species breeding in alpine habitats, their status and trends, or potential cryptic diversity (i.e., sub-species distributions). To address these critical knowledge gaps, we combined published literature, regional monitoring schemes, and expert knowledge from often inaccessible, data-deficient mountain ranges to develop a global list of alpine breeding bird species with their associated distributions and select ecological traits. This dataset compiles alpine breeding records for 1,310 birds, representing 12.0% of extant species and covering all major mountain regions across each continent, excluding Antarctica. The Global Alpine Breeding Bird dataset (GABB) is an essential resource for research on the ecological and evolutionary factors shaping alpine communities, as well as documenting the value of these high elevation, climate-sensitive habitats for conserving biodiversity.


Asunto(s)
Aves , Ecosistema , Animales , Biodiversidad , Cambio Climático , Fenotipo
2.
Ecol Evol ; 10(20): 11488-11506, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144979

RESUMEN

Balancing model complexity is a key challenge of modern computational ecology, particularly so since the spread of machine learning algorithms. Species distribution models are often implemented using a wide variety of machine learning algorithms that can be fine-tuned to achieve the best model prediction while avoiding overfitting. We have released SDMtune, a new R package that aims to facilitate training, tuning, and evaluation of species distribution models in a unified framework. The main innovations of this package are its functions to perform data-driven variable selection, and a novel genetic algorithm to tune model hyperparameters. Real-time and interactive charts are displayed during the execution of several functions to help users understand the effect of removing a variable or varying model hyperparameters on model performance. SDMtune supports three different metrics to evaluate model performance: the area under the receiver operating characteristic curve, the true skill statistic, and Akaike's information criterion corrected for small sample sizes. It implements four statistical methods: artificial neural networks, boosted regression trees, maximum entropy modeling, and random forest. Moreover, it includes functions to display the outputs and create a final report. SDMtune therefore represents a new, unified and user-friendly framework for the still-growing field of species distribution modeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA