Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circulation ; 119(14): 1908-17, 2009 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19332469

RESUMEN

BACKGROUND: Kidney androgen-regulated protein (KAP), a proximal tubule androgen-regulated gene, codes for a protein of unknown function. METHODS AND RESULTS: To investigate the consequences of KAP overexpression in kidney, we produced KAP transgenic mice and performed microarray expression analyses in kidneys of control and transgenic males. Downregulation of the androgen-sensitive Cyp4A14 monooxygenase gene in KAP transgenic mice prompted us to analyze blood pressure levels, and we observed that transgenic mice were hypertensive. Inhibition of 20-hydroxyeicosatetraenoic acid synthesis by N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) reduced the increased 20-hydroxyeicosatetraenoic acid levels in urine and normalized arterial pressure in transgenic mice, as did the NADPH oxidase inhibitor apocynin. Increased oxidative stress in transgenic mice was demonstrated by (1) enhanced excretion of urinary markers of oxidative stress, 8-iso-prostaglandin F2alpha, 8-hydroxydeoxyguanosine, and thiobarbituric acid-reacting substances; (2) augmented mitochondrial DNA damage and malondialdehyde levels in kidneys; and (3) diminished catalase and glutathione peroxidase activity in transgenic kidneys. Mice exhibited renal defects that included focal segmental glomerulosclerosis, proteinuria, glycosuria, and fibrosis. CONCLUSIONS: Taken together, these results indicate that KAP expression is critical for cardiovascular-renal homeostasis maintenance and that hypertension is associated with increased oxidative stress. This is the first report showing that overexpression of an androgen-regulated, proximal tubule-specific gene induces hypertension. These observations may shed light on the molecular pathophysiology of gender differences in the prevalence and severity of hypertension and chronic renal disease.


Asunto(s)
Presión Sanguínea/fisiología , Daño del ADN , Hemodinámica/fisiología , Hipertensión/genética , Enfermedades Renales/genética , Riñón/patología , Estrés Oxidativo/fisiología , Proteínas/genética , Angiotensinógeno/genética , Animales , Catalasa/metabolismo , Exones , Regulación de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Humanos , Hipertensión/fisiopatología , Inmunohistoquímica , Riñón/fisiopatología , Riñón/ultraestructura , Enfermedades Renales/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/metabolismo
2.
Endocrinology ; 149(7): 3390-402, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18403483

RESUMEN

Adiponectin is an adipocyte hormone, with relevant roles in lipid metabolism and glucose homeostasis, recently involved in the control of different endocrine organs, such as the placenta, pituitary and, likely, the ovary. However, whether as described previously for other adipokines, such as leptin and resistin, adiponectin is expressed and/or conducts biological actions in the male gonad remains unexplored. In this study, we provide compelling evidence for the expression, putative hormonal regulation, and direct effects of adiponectin in the rat testis. Testicular expression of adiponectin was demonstrated along postnatal development, with a distinctive pattern of RNA transcripts and discernible protein levels that appeared mostly located at interstitial Leydig cells. Testicular levels of adiponectin mRNA were marginally regulated by pituitary gonadotropins but overtly modulated by metabolic signals, such as glucocorticoids, thyroxine, and peroxisome proliferator-activated receptor-gamma, whose effects were partially different from those on circulating levels of adiponectin. In addition, expression of the genes encoding adiponectin receptor (AdipoR)-1 and AdipoR2 was detected in the rat testis, with developmental changes and gonadotropin regulation for AdipoR2 mRNA, and prominent levels of AdipoR1 in seminiferous tubules. Moreover, recombinant adiponectin significantly inhibited basal and human choriogonadotropin-stimulated testosterone secretion ex vivo, whereas it failed to change relative levels of several Sertoli cell-expressed mRNAs, such as stem cell factor and anti-Müllerian hormone. In summary, our data are the first to document the expression, regulation and functional role of adiponectin in the rat testis. Taken together with its recently reported expression in the ovary and its effects on LH secretion and ovarian steroidogenesis, these results further substantiate a multifaceted role of adiponectin in the control of the reproductive axis, which might operate as endocrine integrator linking metabolism and gonadal function.


Asunto(s)
Adiponectina/farmacología , Células Intersticiales del Testículo/efectos de los fármacos , Testículo/efectos de los fármacos , Adiponectina/genética , Adiponectina/metabolismo , Animales , Western Blotting , Hormona Folículo Estimulante/farmacología , Expresión Génica/efectos de los fármacos , Gonadotropinas/farmacología , Inmunohistoquímica , Células Intersticiales del Testículo/metabolismo , Masculino , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rosiglitazona , Testículo/metabolismo , Tiazolidinedionas/farmacología
3.
Expert Rev Endocrinol Metab ; 2(2): 239-249, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30754186

RESUMEN

Gonadal development and function is sustained by the complex interaction of an array of regulatory signals that operate directly on the gonads and/or indirectly via modulation of gonadotropin secretion. During the last decade, different factors primarily involved in the control of food intake and energy balance have been demonstrated as putative modulators of different elements of the reproductive axis, including the gonads, thus helping to define the neuroendocrine basis for the link between body energy stores and fertility. These factors include not only the adipocyte-derived hormone leptin, which is indispensable for proper energy balance and reproduction, but also a number of neuropeptides and hormones of central and peripheral origin. In the latter, growing evidence strongly suggests the involvement of the stomach-secreted peptide ghrelin in the control of several aspects of gonadal function. Interestingly, leptin and ghrelin have been proposed as reciprocally related regulators of energy homeostasis; however, their potential interplay in the control of reproduction remains ill defined. This work will summarize the most salient findings concerning the potential roles of leptin and ghrelin in the functional control of the gonads. In addition, open issues regarding the reproductive facets of these metabolic signals will be highlighted. Overall, the authors propose that through complementary or antagonistic actions, leptin and ghrelin may jointly cooperate to modulate a wide set of reproductive functions, thereby contributing to the physiologic integration of energy balance and reproduction.

4.
Endocrinology ; 146(12): 5164-75, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16141395

RESUMEN

Orexins, hypothalamic neuropeptides initially involved in the control of food intake and sleep-wake cycle, have recently emerged as pleiotropic regulators of different biological systems, including the reproductive axis. Besides central actions, peripheral expression and functions of orexins have been reported, and prepro-orexin and orexin type-1 receptor mRNAs have been detected in the testis. However, the pattern of expression and biological actions of orexin in the male gonad remain mostly unexplored. In this study, we report analyses on testicular prepro-orexin mRNA expression and orexin-A immunoreactivity in different experimental settings, and on direct effects of orexin-A on seminiferous tubule functions. Expression of prepro-orexin mRNA was demonstrated in the rat testis at different stages of postnatal development, with negligible levels at early juvenile period and maximum values in adulthood. Likewise, orexin-A immunoreactivity was demonstrated along postnatal maturation, with strong peptide signal in Leydig cells and spermatocytes at specific stages of meiosis. Testicular expression of prepro-orexin mRNA appeared hormonally regulated; its levels decreased after hypophysectomy and increased after gonadotropin replacement and ghrelin stimulation. Finally, orexin-A suppressed the expression of key Sertoli cell genes, such as Müllerian-inhibiting substance and stem cell factor, and inhibited DNA synthesis in specific stages of the seminiferous epithelium. In conclusion, we provide evidence for the regulated expression of orexin in the rat testis and its potential involvement in the control of seminiferous tubule functions. Together with our recent results on the expression of orexin type-1 receptor in the rat testis, our data further document a novel testicular site of action of orexins in the control of male reproductive axis.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Precursores de Proteínas/genética , ARN Mensajero/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Hormonas/farmacología , Inmunohistoquímica , Células Intersticiales del Testículo/metabolismo , Masculino , Orexinas , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Túbulos Seminíferos/efectos de los fármacos , Túbulos Seminíferos/fisiología , Distribución Tisular
5.
Endocrinology ; 146(7): 3018-25, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15790726

RESUMEN

Ghrelin, the endogenous ligand of the GH secretagogue receptor, has been recently involved in a wide array of biological functions, including signaling of energy insufficiency and energy homeostasis. On the basis of the proven reproductive effects of other regulators of energy balance, such as the adipocyte-derived hormone leptin, we hypothesized that systemic ghrelin may participate in the control of key aspects of reproductive function. To test this hypothesis, the effects of daily treatment with ghrelin were assessed in rats, pair-fed with control animals, in two relevant reproductive states, puberty and gestation, which are highly dependent on proper energy stores. Daily sc injection of ghrelin (0.5 nmol/12 h; between postnatal d 33 and 43) significantly decreased serum LH and testosterone levels and partially prevented balano-preputial separation (as an external index of puberty onset) in pubertal male rats. On the contrary, chronic administration of ghrelin to prepubertal females, between postnatal d 23 and 33, failed to induce major changes in serum levels of gonadotropins and estradiol, nor did it modify the timing of puberty, as estimated by the ages at vaginal opening and first estrus. Moreover, females treated with ghrelin at puberty subsequently displayed normal estrous cyclicity and were fertile. Conversely, ghrelin administration (0.5 nmol/12 h) during the first half of pregnancy (d 1-11) resulted in a significant decrease in pregnancy outcome, as estimated by the number of pups born per litter, without changes in the number of successful pregnancies at term or gestational length. Overall, our data indicate that persistently elevated ghrelin levels, as a putative signal for energy insufficiency, may operate as a negative modifier of key reproductive states, such as pregnancy and (male) puberty onset.


Asunto(s)
Hormonas Peptídicas/sangre , Resultado del Embarazo , Preñez/sangre , Maduración Sexual , Animales , Esquema de Medicación , Femenino , Ghrelina , Inyecciones Subcutáneas , Masculino , Hormonas Peptídicas/administración & dosificación , Hormonas Peptídicas/farmacología , Embarazo , Ratas , Ratas Wistar , Maduración Sexual/efectos de los fármacos , Factores de Tiempo
6.
Endocrinology ; 146(4): 1689-97, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15637288

RESUMEN

KiSS-1 was originally identified as a metastasis suppressor gene encoding an array of structurally related peptides, namely kisspeptins, which acting through the G protein-coupled receptor GPR54 are able to inhibit tumor progression. Unexpectedly, a reproductive facet of this newly discovered system has recently arisen, and characterization of the role of the KiSS-1/GPR54 system in the neuroendocrine control of gonadotropin secretion has been initiated. However, such studies have been so far mostly restricted to LH, and very little is known about the actual contribution of this system in the regulation of FSH release. To address this issue, the effects of KiSS-1 peptide on FSH secretion were monitored in vivo and in vitro under different experimental conditions. Intracerebroventricular administration of KiSS-1 peptide significantly stimulated FSH secretion in prepubertal and adult rats. Yet, dose-response analyses in vivo demonstrated an ED(50) value for the FSH-releasing effects of KiSS-1 of 400 pmol, i.e. approximately 100-fold higher than that of LH. In addition, systemic (ip and iv) injection of KiSS-1 significantly stimulated FSH secretion in vivo. However, KiSS-1 failed to elicit basal FSH release directly at the pituitary level, although it moderately enhanced GnRH-stimulated FSH secretion in vitro. Finally, mechanistic studies revealed that the ability of KiSS-1 to elicit FSH secretion was abolished by the blockade of endogenous GnRH actions, but it was persistently observed in different models of leptin insufficiency and after blockade of endogenous excitatory amino acid and nitric oxide pathways, i.e. relevant signals in the neuroendocrine control of gonadotropin secretion. In summary, our results extend previous recent observations on the role of KiSS-1 in the control of LH secretion and provide solid evidence for a stimulatory effect of KiSS-1 on FSH release, acting at central level. Overall, it is proposed that the KiSS-1/GPR54 system is a novel, pivotal downstream element in the neuroendocrine network governing gonadotropin secretion.


Asunto(s)
Hormona Folículo Estimulante/metabolismo , Proteínas/farmacología , Receptores de Neuropéptido/fisiología , Animales , Aminoácidos Excitadores/farmacología , Femenino , Hormona Folículo Estimulante/sangre , Hormona Liberadora de Gonadotropina/farmacología , Kisspeptinas , Hormona Luteinizante/metabolismo , Masculino , Óxido Nítrico/fisiología , Radioinmunoensayo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1
7.
J Clin Endocrinol Metab ; 90(3): 1798-804, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15585554

RESUMEN

Ghrelin, the endogenous ligand of the GH secretagogue receptor (GHS-R), is a newly identified, ubiquitously expressed molecule that has been involved in a wide array of endocrine and nonendocrine functions, including cell proliferation. In this context, our group recently reported the expression of ghrelin and its functional receptor, the GHS-R type 1a, in the human ovary and testis as well as several testicular tumors. Ovarian malignancies, however, remain unexplored. Notably, a vast majority of ovarian tumors derive from the surface epithelium, which originates from the celomic epithelium. Considering the proven expression of ghrelin in the human ovary, and its reported effects in the proliferative activity of different cancer cell lines, we aimed at evaluating whether the ovarian surface epithelium as well as related reproductive structures and tumors are potential targets of ghrelin. To this end, expression of GHS-R1a was analyzed by immunohistochemistry in a panel of normal, metaplastic, and neoplastic tissues. Uniform GHS-R1a immunostaining was detected throughout the ovarian surface epithelium. Likewise, ciliated cells within the fallopian tube epithelium showed strong GHS-R1a expression. In contrast, other celomic derivatives, such as endometrium and endocervix, were negative for GHS-R1a immunoreactivity. In keeping with data from normal tissues, inclusion cysts from the surface epithelium expressed GHS-R1a. Similarly, benign serous tumors resembling fallopian tube epithelium were also positive, whereas serous cystadenocarcinomas showed GHS-R1a expression only in highly differentiated specimens. In contrast, other neoplasms, such as mucinous cystadenomas and cystadenocarcinomas, endometrioid tumors, clear cell carcinomas, and Brenner tumors, did not express GHS-R1a. In conclusion, our results demonstrate that the ovarian surface epithelium and related tumors are potential targets for systemic or locally produced ghrelin because they express the functional type 1a GHS-R. Considering the relevant role of the ovarian surface epithelium in key physiological events (such as ovulation) and neoplastic transformation of the ovary, the potential actions of ghrelin in those phenomena merit further investigation.


Asunto(s)
Trompas Uterinas/metabolismo , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cuello del Útero/embriología , Cuello del Útero/metabolismo , Endometrio/embriología , Endometrio/metabolismo , Células Epiteliales/metabolismo , Trompas Uterinas/embriología , Femenino , Humanos , Inmunohistoquímica , Conductos Paramesonéfricos/embriología , Neoplasias Ováricas/patología , Ovario/embriología , Receptores de Ghrelina
8.
Endocrinology ; 146(1): 156-63, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15375028

RESUMEN

Loss-of-function mutations of the gene encoding GPR54, the putative receptor for the KiSS-1-derived peptide metastin, have been recently associated with hypogonadotropic hypogonadism, in both rodents and humans. Yet the actual role of the KiSS-1/GPR54 system in the neuroendocrine control of gonadotropin secretion remains largely unexplored. To initiate such analysis, the effects of KiSS-1 peptide on LH secretion were monitored using in vivo and in vitro settings under different experimental conditions. Central intracerebroventricular administration of KiSS-1 peptide potently elicited LH secretion in vivo over a range of doses from 10 pmol to 1 nmol. The effect of centrally injected KiSS-1 appeared to be mediated via the hypothalamic LHRH. However, no effect of central administration of KiSS-1 was detected on relative LHRH mRNA levels. Likewise, systemic (i.p. and i.v.) injection of KiSS-1 markedly stimulated LH secretion. This effect was similar in terms of maximum response to that of central administration of KiSS-1 and might be partially attributed to its ability to stimulate LH secretion directly at the pituitary. Finally, the LH-releasing activity of KiSS-1 was persistently observed after blockade of endogenous excitatory amino acid and nitric oxide pathways, i.e. relevant neurotransmitters in the neuroendocrine control of LH secretion. In summary, our results provide solid evidence for a potent stimulatory effect of KiSS-1 on LH release, acting at central levels (likely the hypothalamus) and eventually at the pituitary, and further document a novel role of the KiSS-1/GPR54 system as a relevant downstream element in the neuroendocrine network governing LH secretion.


Asunto(s)
Hormona Luteinizante/metabolismo , Proteínas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Aminoácidos Excitadores/metabolismo , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Inyecciones Intraventriculares , Kisspeptinas , Ligandos , Ratones , Óxido Nítrico/metabolismo , Hipófisis/efectos de los fármacos , Proteínas/administración & dosificación , Proteínas/metabolismo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Receptores de Neuropéptido/metabolismo
9.
Mol Cell Endocrinol ; 226(1-2): 1-9, 2004 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-15488999

RESUMEN

Ghrelin was originally identified in 1999 as the endogenous ligand of the growth hormone (GH) secretagogue receptor (GHS-R). Since then, an ever growing number of publications have reported the potential involvement of this molecule in the regulation of a large array of endocrine and non-endocrine functions, including the control of GH secretion and several other neuroendocrine axes as well as food intake and energy balance. On the basis of its proposed role as indicator of energy insufficiency and the proven reproductive effects of other regulators of energy homeostasis and growth (such as the adipocyte-derived hormone leptin), it is tempting to hypothesize that ghrelin might play a role in the control of reproductive function and fertility. Indeed, although evidences in this area are still fragmentary, we review herein data from different research groups, which have recently substantiated the reproductive facets of this newly identified hormone. Thus, expression of ghrelin has been demonstrated in human and rodent placenta, and ghrelin has been reported to inhibit early embryo development. In addition, ghrelin was shown to suppress luteinizing hormone (LH) secretion in vivo, and to decrease LH responsiveness to LH-releasing hormone (LHRH) in vitro. Moreover, ghrelin was able to inhibit stimulated testicular testosterone secretion, whereas androgens have been proven independent modulators of circulating ghrelin levels. In this context, our group has recently provided extensive evidence for the expression of ghrelin and its putative receptor, the type 1a GHS-R, in rat and human gonads. Testicular expression of ghrelin was highly selective for mature Leydig cells and under the hormonal control of pituitary LH, while in the ovary, expression of ghrelin was demonstrated in steroidogenically active luteal cells and interstitial hilus cells. Likewise, expression of GHS-R type 1a was demonstrated in Sertoli and Leydig cells of the testis and follicular, luteal and interstitial hilus cells in the ovary. In summary, the data so far available indicate that ghrelin may operate at different levels of the reproductive system, including the testis and the ovary, which are potential targets for systemic ghrelin actions. In addition, ghrelin is produced locally within the human and rodent gonads, where the presence of both components (ligand and receptor) of ghrelin signaling system is highly suggestive of a conserved regulatory role for this newly discovered molecule in the regulation of mammalian gonadal function. Overall, it is proposed that ghrelin may cooperate with other regulatory signals, such as leptin, in the integrated control of energy balance and reproduction.


Asunto(s)
Metabolismo Energético/fisiología , Fertilidad , Hormonas Peptídicas/fisiología , Reproducción/fisiología , Animales , Ghrelina , Humanos , Leptina/metabolismo
10.
J Physiol ; 561(Pt 2): 379-86, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15486019

RESUMEN

The awakening of the gonadotrophic axis at puberty is the end-point of a complex cascade of sex developmental events that leads to the attainment of reproductive capacity. Recently, loss-of-function mutations of the gene encoding GPR54, the putative receptor for the KiSS-1-derived peptide metastin, have been linked to hypogonadotrophic hypogonadism, both in rodents and humans. However, the actual role of the KiSS-1/GPR54 system in the timing of puberty onset remains unexplored. We report herein that chronic central administration of KiSS-1 peptide to immature female rats induced the precocious activation of the gonadotrophic axis, as estimated by advanced vaginal opening, elevated uterus weight, and increased serum levels of luteinizing hormone (LH) and oestrogen. The central effect of KiSS-1 upon LH release appeared to be mediated via the hypothalamic LH-releasing hormone. In contrast, despite the well-documented permissive role of body fat stores and the adipocyte-derived hormone leptin in puberty maturation, acute activation of the gonadotrophic axis by KiSS-1 was persistently observed in pubertal animals under food deprivation, after central immunoneutralization of leptin, and in a model of leptin resistance. Overall, the present results, together with our recent data on maximum expression of KiSS-1 and GPR54 genes in the hypothalamus at puberty, provide novel evidence for a role of the KiSS-1 system as a downstream element in the hypothalamic network triggering the onset of puberty.


Asunto(s)
Fragmentos de Péptidos/administración & dosificación , Receptores de Neuropéptido/metabolismo , Reproducción/fisiología , Vagina/fisiología , Animales , Femenino , Inyecciones Intraventriculares , Ligandos , Hormona Luteinizante/metabolismo , Ratones , Ratas , Ratas Wistar , Ratas Zucker , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Vagina/metabolismo
11.
Endocrinology ; 145(11): 4825-34, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15284210

RESUMEN

Ghrelin has emerged as putative regulator of an array of endocrine and nonendocrine functions, including cell proliferation. Recently, we provided evidence for the expression of ghrelin in mature, but not in undifferentiated, Leydig cells of rat and human testis. Yet testicular actions of ghrelin, other than modulation of testosterone secretion, remain unexplored. In the present study we evaluated the effects of ghrelin on proliferation of Leydig cell precursors during puberty and after selective elimination of mature Leydig cells by treatment with ethylene dimethane sulfonate. In these settings, intratesticular injection of ghrelin significantly decreased the proliferative activity of differentiating immature Leydig cells, estimated by 5-bromodeoxyuridine labeling. This response was selective and associated, in ethylene dimethane sulfonate-treated animals, with a decrease in the mRNA levels of stem cell factor (SCF), i.e. a key signal in spermatogenesis and a putative regulator of Leydig cell development. Thus, the effects of ghrelin on SCF gene expression were evaluated. In adult rats, ghrelin induced a significant decrease in SCF mRNA levels in vivo. Such an inhibitory action was also detected in vitro using cultures of staged seminiferous tubules. The inhibitory effect of ghrelin in vivo was dependent on proper FSH input, because it was detected in hypophysectomized rats only after FSH replacement. Overall, it is proposed that acquisition of ghrelin expression by Leydig cell precursors during differentiation may operate as a self-regulatory signal for the inhibition of the proliferative activity of this cell type through direct or indirect (i.e. SCF-mediated) mechanisms. In addition, we present novel evidence for the ability of ghrelin to modulate the expression of the SCF gene, which may have implications for the mode of action of this molecule in the testis as well as in other physiological systems.


Asunto(s)
Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/efectos de los fármacos , Hormonas Peptídicas/farmacología , Factor de Células Madre/genética , Factores de Edad , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Ghrelina , Células Intersticiales del Testículo/fisiología , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Testículo/citología , Testículo/fisiología
12.
Endocrinology ; 145(10): 4565-74, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15242985

RESUMEN

The gonadotropic axis is centrally controlled by a complex regulatory network of excitatory and inhibitory signals that is activated at puberty. Recently, loss of function mutations of the gene encoding G protein-coupled receptor 54 (GPR54), the putative receptor for the KiSS-1-derived peptide metastin, have been associated with lack of puberty onset and hypogonadotropic hypogonadism. Yet the pattern of expression and functional role of the KiSS-1/GPR54 system in the rat hypothalamus remain unexplored to date. In the present work, expression analyses of KiSS-1 and GPR54 genes were conducted in different physiological and experimental settings, and the effects of central administration of KiSS-1 peptide on LH release were assessed in vivo. Persistent expression of KiSS-1 and GPR54 mRNAs was detected in rat hypothalamus throughout postnatal development, with maximum expression levels at puberty in both male and female rats. Hypothalamic expression of KiSS-1 and GPR54 genes changed throughout the estrous cycle and was significantly increased after gonadectomy, a rise that was prevented by sex steroid replacement both in males and females. Moreover, hypothalamic expression of the KiSS-1 gene was sensitive to neonatal imprinting by estrogen. From a functional standpoint, intracerebroventricular administration of KiSS-1 peptide induced a dramatic increase in serum LH levels in prepubertal male and female rats as well as in adult animals. In conclusion, we provide novel evidence of the developmental and hormonally regulated expression of KiSS-1 and GPR54 mRNAs in rat hypothalamus and the ability of KiSS-1 peptide to potently stimulate LH secretion in vivo. Our current data support the contention that the hypothalamic KiSS-1/GPR54 system is a pivotal factor in central regulation of the gonadotropic axis at puberty and in adulthood.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas/metabolismo , Receptores de Neuropéptido/metabolismo , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Castración , Estradiol/farmacología , Estro , Femenino , Regulación del Desarrollo de la Expresión Génica , Hormonas/fisiología , Inyecciones Intraventriculares , Kisspeptinas , Hormona Luteinizante/metabolismo , Masculino , Ratones , Fragmentos de Péptidos/administración & dosificación , Proteínas/administración & dosificación , Proteínas/química , Proteínas/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Receptores de Neuropéptido/genética
13.
Eur J Endocrinol ; 150(3): 397-403, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15012627

RESUMEN

OBJECTIVE: Raloxifene is a non-steroidal selective estrogen receptor modulator (SERM) that mimics estrogenic activity on bone density and blood lipid concentration without uterotropic actions. Previous data from our laboratory indicated that, as is the case for estrogen, neonatal administration of raloxifene disturbed normal differentiation of the hypothalamic circuitries governing the gonadotropic axis. In contrast, raloxifene did not act in the same way as estrogen does on the neuronal systems controlling sexual receptivity in the female rat. At present, however, the mechanisms for these organizing effects of raloxifene are not completely elucidated. DESIGN AND METHODS: To analyze this phenomenon, female rats were injected daily with raloxifene (50, 100, 250 or 500 microg/rat per day) between days 1 and 5 of age. On day 23, hypothalamic gonadotropin-releasing hormone (LHRH) mRNA expression was assessed, and pituitary and plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels were measured in basal and LHRH-stimulated conditions. In addition, LH and FSH responses to ovariectomy were evaluated in raloxifene-treated females. Finally, we monitored the ability of neonatal administration of a potent LHRH agonist ([d-Ala(6),d-Gly(10)]-LHRH ethylamide; 0.01 microg/kg per 12 h on days 1-5) to counteract the effects of raloxifene. RESULTS: Our analyses demonstrated that prepubertal rats (23-day-old females) treated neonatally with raloxifene showed decreased hypothalamic LHRH mRNA expression levels, reduced pituitary content of LH and FSH, reduced basal and LHRH-stimulated LH secretion in vivo and in vitro, and decreased response to ovariectomy. In addition, adult females treated neonatally with raloxifene showed anovulation and reduced serum LH levels; these effects were not prevented by the simultaneous administration of a LHRH agonist. CONCLUSION: In conclusion, our data demonstrate that neonatal administration of raloxifene can disrupt the programming of hypothalamic-pituitary-ovarian axis function. Reduced LH secretion, under basal and LHRH-stimulated conditions and after ovariectomy, is probably related to decreased LHRH expression, reduced pituitary LH content and/or decreased pituitary responsiveness to hypothalamic LHRH.


Asunto(s)
Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Ovario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Animales , Animales Recién Nacidos , Femenino , Hormona Folículo Estimulante/sangre , Hormona Folículo Estimulante/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Hormona Luteinizante/sangre , Hormona Luteinizante/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Ovariectomía , Ovario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Ratas Wistar
14.
Endocrinology ; 145(5): 2297-306, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14764632

RESUMEN

Orexins are hypothalamic neuropeptides primarily involved in the regulation of food intake and arousal states. In addition, a role for orexins as central neuroendocrine modulators of reproductive function has recently emerged. Prepro-orexin and orexin type-1 receptor mRNAs have been detected in the rat testis. This raises the possibility of additional peripheral actions of orexins in the control of reproductive axis, which remains so far unexplored. To analyze the biological effects and mechanisms of action of orexins in the male gonad, we evaluated testicular expression of orexin receptor 1 (OX(1)R) and orexin receptor 2 (OX(2)R) mRNAs in different experimental settings and the effect of orexin-A on testicular testosterone (T) secretion. Persistent expression of OX(1)R mRNA was demonstrated in the rat testis throughout postnatal development. In contrast, OX(2)R transcript was not detected at any developmental stage. Expression of OX(1)R mRNA persisted after selective elimination of mature Leydig cells and was detected in isolated seminiferous tubules at defined stages of the seminiferous epithelial cycle. In addition, testicular OX(1)R mRNA expression appeared to be under hormonal regulation; it was reduced by long-term hypophysectomy and partially restored by FSH replacement, whereas down-regulation was observed after exposure to increasing doses of the ligand in vitro. Moreover, OX(1)R mRNA expression was sensitive to neonatal imprinting by estrogen. Finally, orexin-A, in a dose-dependent manner, significantly increased basal, but not human choriogonadotropin-stimulated, T secretion in vitro. A similar stimulatory effect was observed in vivo after intratesticular administration of orexin-A. In conclusion, our present results provide the first evidence for the regulated expression of OX(1)R mRNA and functional role of orexin-A in the rat testis. Overall, our data are suggestive of a novel site of action of orexins in the control of male reproductive axis.


Asunto(s)
Proteínas Portadoras/farmacología , Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Neuropéptidos/farmacología , Receptores de Neuropéptido/genética , Testículo/efectos de los fármacos , Testículo/fisiología , Testosterona/metabolismo , Envejecimiento , Animales , Gonadotropina Coriónica/farmacología , Relación Dosis-Respuesta a Droga , Hormona Folículo Estimulante/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Hipofisectomía , Células Intersticiales del Testículo/fisiología , Masculino , Receptores de Orexina , Orexinas , ARN Mensajero/análisis , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Túbulos Seminíferos/química , Testículo/química
15.
J Clin Endocrinol Metab ; 89(1): 400-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14715878

RESUMEN

Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHS-R), has been primarily linked to the central neuroendocrine regulation of GH secretion and food intake, although additional peripheral actions of ghrelin have also been reported. In this context, the expression of ghrelin and its cognate receptor has been recently demonstrated in rat testis, suggesting a role for this molecule in the direct control of male gonadal function. However, whether this signaling system is present in human testis remains largely unexplored. In this study we report the expression and cellular location of ghrelin and its functional receptor, the type 1a GHS-R, in adult human testis. In addition, evaluation of ghrelin and GHS-R1a immunoreactivity in testicular tumors and dysgenetic tissue is presented. The expression of the mRNAs encoding ghrelin and GHS-R1a was demonstrated in human testis specimens by RT-PCR, followed by direct sequencing. In normal testis, ghrelin immunostaining was demonstrated in interstitial Leydig cells and, at lower intensity, in Sertoli cells within the seminiferous tubules. In contrast, ghrelin was not detected in germ cells at any stage of spermatogenesis. The cognate ghrelin receptor showed a wider pattern of cellular distribution, with detectable GHS-R1a protein in germ cells, mainly in pachytene spermatocytes, as well as in somatic Sertoli and Leydig cells. Ghrelin immunoreactivity was absent in poorly differentiated Leydig cell tumor, which retained the expression of GHS-R1a peptide. In contrast, highly differentiated Leydig cell tumors expressed both the ligand and the receptor. The expression of ghrelin and GHS-R1a was also detected in dysgenetic Sertoli cell-only seminiferous tubules, whereas germ cell tumors (seminoma and embryonal carcinoma) were negative for ghrelin and were weakly positive for GHS-R1a. In conclusion, our results demonstrate that ghrelin and the type 1a GHS-R are expressed in adult human testis and testicular tumors. Overall, the expression of ghrelin and its functional receptor in human and rat testis, with roughly similar patterns of cellular distribution, is highly suggestive of a conserved role for this newly discovered molecule in the regulation of mammalian testicular function.


Asunto(s)
Expresión Génica , Hormonas Peptídicas/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias Testiculares/química , Testículo/química , Adulto , Anciano , Carcinoma Embrionario/química , Ghrelina , Humanos , Inmunohistoquímica , Tumor de Células de Leydig/química , Células Intersticiales del Testículo/química , Masculino , Persona de Mediana Edad , Hormonas Peptídicas/análisis , ARN Mensajero/análisis , Receptores Acoplados a Proteínas G/análisis , Receptores de Ghrelina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Túbulos Seminíferos/química , Seminoma/química , Células de Sertoli/química
16.
Endocrinology ; 144(4): 1594-602, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12639944

RESUMEN

Ghrelin, a 28-amino acid acylated peptide, has been recently identified as the endogenous ligand for the GH secretagogue receptor. Previous studies demonstrated that ghrelin, acting centrally, strongly stimulates GH release and food intake. In this study we provide novel evidence for the expression of ghrelin in the cyclic and pregnant rat ovary. Persistent expression of ghrelin gene was demonstrated in rat ovary throughout the estrous cycle, although its relative mRNA levels varied depending on the stage of the cycle, with the lowest levels in proestrus and peak expression values on diestrous d 1, i.e. during the luteal phase of the cycle. Ghrelin immunoreactivity was predominantly located in the luteal compartment of the ovary; with intense immunostaining being detected in steroidogenic cells from corpus luteum of the current cycle as well as in all generations of regressing corpora lutea. Indeed, predominant expression of ghrelin in the corpus luteum was confirmed using a pseudopregnant rat model, where maximum ghrelin mRNA levels were detected in dissected luteal tissue. To note, the cyclicity in the profile of ovarian expression of ghrelin appeared to be tissue specific, as it was not detected in the stomach, nor was it observed in terms of circulating ghrelin levels. In addition, cyclic expression of ovarian ghrelin mRNA was disrupted by blockade of the preovulatory gonadotropin surge and ovulation by means of administration of a potent GnRH antagonist. Finally, ghrelin mRNA expression was persistently detected in rat ovary throughout pregnancy, with higher levels in early pregnancy and lower expression during the later part of gestation. In conclusion, our data provide novel evidence for the expression of ghrelin in the cyclic and pregnant rat ovary. Dynamic changes in the profile of ghrelin expression were detected during the estrous cycle and throughout pregnancy, thus suggesting a precise regulation of ovarian expression of ghrelin. Overall, our present findings may represent an additional link between body weight homeostasis and female reproductive function.


Asunto(s)
Ovario/fisiología , Hormonas Peptídicas/genética , Animales , Ciclo Estral/fisiología , Femenino , Expresión Génica/fisiología , Ghrelina , Embarazo , Seudoembarazo/fisiopatología , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley
17.
J Clin Endocrinol Metab ; 88(2): 879-87, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12574228

RESUMEN

Ghrelin is a novel 28-amino acid peptide identified as the endogenous ligand for the GH secretagogue receptor (GHS-R). Besides its hallmark central neuroendocrine effects in the control of GH secretion and food intake, an unexpected reproductive facet of ghrelin has recently emerged because expression of this molecule and its cognate receptor has been demonstrated in rat testis. However, whether this signaling system is present in human gonads remains to be evaluated. In this study, we have assessed the presence and cellular location of ghrelin and its functional receptor, namely the type 1a GHS-R, in the cyclic human ovary by means of immunohistochemistry using specific polyclonal antibodies. Strong ghrelin immunostaining was demonstrated in ovarian hilus interstitial cells. In contrast, ghrelin signal was not detected in ovarian follicles at any developmental stage, nor was it present in newly formed corpora lutea (CL) at very early development. However, specific ghrelin immunoreactivity was clearly observed in young and mature CL, whereas expression of the peptide disappeared in regressing luteal tissue. Concerning the cognate receptor, ovarian expression of GHS-R1a protein showed a wider pattern of tissue distribution, with detectable specific signal in oocytes as well as somatic follicular cells; luteal cells from young, mature, old, and regressing CL; and interstitial hilus cells. Of particular note, follicular GHS-R1a peptide expression paralleled follicle development with stronger immunostaining in granulosa and theca layers of healthy antral follicles. In conclusion, our results are the first to demonstrate that ghrelin and its functional type 1a receptor are expressed in the cyclic human ovary with distinct patterns of cellular location. The presence of both components (ligand and receptor) of the ghrelin signaling system within the human ovary opens up the possibility of a potential regulatory role of this novel molecule in ovarian function under physiological and pathophysiological conditions.


Asunto(s)
Folículo Ovárico/química , Hormonas Peptídicas/análisis , Receptores de Superficie Celular/análisis , Receptores Acoplados a Proteínas G , Especificidad de Anticuerpos , Femenino , Ghrelina , Humanos , Ciclo Menstrual/fisiología , Hormonas Peptídicas/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Ghrelina
18.
Biol Reprod ; 68(5): 1631-40, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12606422

RESUMEN

Recent evidence from our research suggested the direct role of ghrelin in the control of testicular function. However, the pattern of expression and hormonal regulation of the gene encoding its cognate receptor (i.e., the growth hormone-secretagogue receptor [GHS-R]) in the male gonad remains to be fully elucidated. In this paper, overall expression of GHS-R mRNA in rat testis was compared with that of the functional receptor form, namely GHS-R type 1a, in different developmental and experimental settings. In addition, cellular distribution of GHS-R within adult testis tissue was assessed. Our analyses demonstrated persistent expression of the GHS-R gene in rat testis throughout postnatal development. In contrast, testicular expression of GHS-R type 1a mRNA remained undetectable before puberty and sharply increased thereafter. In adult testis, GHS-R1a mRNA expression presented a scattered pattern of cellular distribution, including Sertoli and Leydig cells that also showed specific GHS-R1a immunoreactivity. Expression of total GHS-R and specific GHS-R1a mRNAs was detected in isolated seminiferous tubule preparations, with varying levels throughout the defined stages of the spermatogenic cycle. In addition, testicular expression of total GHS-R and GHS-R1a mRNAs was up-regulated by exposure to ghrelin in vitro and after stimulation with FSH in vivo. In conclusion, our data demonstrate that expression of the GHS-R gene in rat testis takes place in a developmental, stage-specific, and hormonally regulated manner. Divergent expression of total GHS-R and type 1a specific mRNAs was detected at certain stages of postnatal development and spermatogenic cycle, thus raising the possibility that, in addition to net changes in GHS-R gene expression, the balance between receptor subtypes may represent a novel mechanism for the tuning of ghrelin sensitivity in rat testis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Hormonas/fisiología , ARN Mensajero/biosíntesis , Receptores Acoplados a Proteínas G/biosíntesis , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Animales , Ghrelina , Gonadotropinas/metabolismo , Hibridación in Situ , Masculino , Hormonas Peptídicas/metabolismo , ARN Mensajero/genética , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Receptores de Ghrelina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Túbulos Seminíferos/metabolismo , Transducción de Señal/fisiología , Espermatogénesis/fisiología , Testículo/citología
19.
Eur J Endocrinol ; 147(5): 677-88, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12444901

RESUMEN

OBJECTIVE: GH secretagogues (GHSs) elicit a variety of biological effects in several endocrine and non-endocrine target tIssues, including activation of the hypothalamic-pituitary-adrenal axis. The latter is mainly carried out through a central hypothalamic action; yet the possibility of additional effects directly at the adrenal level cannot be ruled out. The aims of this study were to evaluate the expression and homologous regulation of the GHS-receptor (GHS-R) gene in rat adrenal and to assess the effects of synthetic (GH releasing peptide-6 - GHRP-6) and natural (ghrelin) ligands of GHS-R upon basal and ACTH-stimulated corticosterone secretion in vitro. DESIGN AND METHODS: Analysis of adrenal expression of target mRNAs (GHS-R, GHS-R1a, ghrelin, and several steroidogenic factors) was conducted by means of primer-specific, semi-quantitative RT-PCR. Evaluation of corticosterone secretion by incubated adrenal tIssue was carried out by specific RIA. RESULTS: RT-PCR analysis demonstrated expression of the GHS-R gene, but not of the gene encoding the cognate ligand ghrelin, in rat adrenal. Moreover, expression of the mRNA coding for the type 1a GHS-R (GHS-R1a), i.e. the biologically active receptor form, was demonstrated. The adrenal expression of the GHS-R message appeared under the regulation of homologous signals in vitro, as short-term incubation of adrenal samples in serum-free medium induced a significant increase in GHS-R mRNA levels that was inhibited by exposure to different doses of GHRP-6 (10(-9)-10(-5) mol/l) or ghrelin (10(-7) mol/l). Notably, an opposite pattern of homologous regulation of GHS-R gene expression was observed at the pituitary. Finally, short-term stimulation with increasing concentrations of GHRP-6 (10(-9)-10(-5) mol/l) or ghrelin (10(-7) mol/l) failed to alter basal and ACTH-stimulated corticosterone secretion in vitro, neither did it modify ACTH-stimulated mRNA expression levels of several upstream elements in the steroidogenic route: the steroidogenic acute regulatory (StAR) protein, and the enzymes P450 cholesterol side-chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). CONCLUSIONS: Our study provides novel evidence for the expression and homologous regulation of the GHS-R gene in rat adrenal. However, our results cast doubts on the possibility of direct adrenal actions of ligands of the GHS-R in the regulation of corticosterone secretion in the rat.


Asunto(s)
Glándulas Suprarrenales/metabolismo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G , Glándulas Suprarrenales/fisiología , Animales , Expresión Génica , Hormona del Crecimiento/metabolismo , Masculino , Ratas , Ratas Wistar , Receptores de Ghrelina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Biol Reprod ; 67(6): 1768-76, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12444052

RESUMEN

Ghrelin, the endogenous ligand for the growth hormone-secretagogue receptor, is a recently cloned 28-amino acid peptide, expressed primarily in the stomach and hypothalamus, with the ability to stimulate growth hormone (GH) release and food intake. However, the possibility of additional, as yet unknown biological actions of ghrelin has been suggested. As a continuation of our recent findings on the expression and functional role of ghrelin in rat testis, we report here the pattern of cellular expression of ghrelin peptide in rat testis during postnatal development and after selective Leydig cell elimination, and we assess hormonal regulation of testicular ghrelin expression, at the mRNA and/or protein levels, in different experimental models. Immunohistochemical analyses along postnatal development demonstrated selective location of ghrelin peptide within rat testis in mature fetal- and adult-type Leydig cells. In good agreement, ghrelin protein appeared undetectable in testicular interstitium after selective Leydig cell withdrawal. In terms of hormonal regulation, testicular ghrelin mRNA and protein expression decreased to negligible levels after long-term hypophysectomy, whereas replacement with human chorionic gonadotropin (CG) (as superagonist of LH) partially restored ghrelin mRNA and peptide expression. Furthermore, acute administration of human CG (25 IU) to intact rats resulted in a transient increase in testicular ghrelin mRNA levels, with peak values 4 h after injection, an effect that was not mimicked by FSH (12.5 IU/rat). In contrast, testicular expression of ghrelin mRNA remained unaltered in GH-deficient rats, under hyper- and hypothyroidism conditions, as well as in adrenalectomized animals. In conclusion, our results demonstrate that mature Leydig cells are the source of ghrelin expression in rat testis, the protein being expressed in both fetal- and adult-type Leydig cells. In addition, our data indicate that testicular expression of ghrelin is hormonally regulated and is at least partially dependent on pituitary LH.


Asunto(s)
Expresión Génica , Hormonas Peptídicas/genética , Testículo/química , Adrenalectomía , Animales , Gonadotropina Coriónica/farmacología , Ghrelina , Hormona del Crecimiento/deficiencia , Hipertiroidismo/metabolismo , Hipofisectomía , Hipotiroidismo/metabolismo , Inmunohistoquímica , Células Intersticiales del Testículo/química , Hormona Luteinizante/fisiología , Masculino , Hormonas Peptídicas/análisis , ARN Mensajero/análisis , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testículo/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA