Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 31(15): 1884-95, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21874051

RESUMEN

MicroRNAs (miRNAs) carry out post-transcriptional control of a multitude of cellular processes. Aberrant expression of miRNA can lead to diseases, including cancer. Gliomas are aggressive brain tumors that are thought to arise from transformed glioma-initiating neural stem cells (giNSCs). With the use of giNSCs and human glioblastoma cells, we investigated the function of miRNAs in gliomas. We identified pro-neuronal miR-128 as a candidate glioma tumor suppressor miRNA. Decreased expression of miR-128 correlates with aggressive human glioma subtypes. With a combination of molecular, cellular and in vivo approaches, we characterize miR-128's tumor suppressive role. miR-128 represses giNSC growth by enhancing neuronal differentiation. miR-128 represses growth and mediates differentiation by targeting oncogenic receptor tyrosine kinases (RTKs) epithelial growth factor receptor and platelet-derived growth factor receptor-α. Using an autochthonous glioma mouse model, we demonstrated that miR-128 repressed gliomagenesis. We identified miR-128 as a glioma tumor suppressor that targets RTK signaling to repress giNSC self-renewal and enhance differentiation.


Asunto(s)
Neoplasias Encefálicas/genética , Receptores ErbB/genética , Genes Supresores de Tumor , Glioma/genética , MicroARNs/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Ratones SCID , Células-Madre Neurales/fisiología
2.
Mol Cell Neurosci ; 26(4): 544-57, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15276156

RESUMEN

NMDA excitotoxicity has been proposed to mediate the death of retinal ganglion cells (RGCs) in glaucoma and ischemia. Here, we reexamine the effects of glutamate and NMDA on rat RGCs in vitro and in situ. We show that highly purified RGCs express NR1 and NR2 receptor subunits by Western blotting and immunostaining, and functional NMDA receptor channels by whole-cell patch-clamp recording. Nevertheless, high concentrations of glutamate or NMDA failed to induce the death of purified RGCs, even after prolonged exposure for 24 h. RGCs co-cultured together with ephrins, astrocytes, or mixed retinal cells were similarly invulnerable to glutamate and NMDA, though their NMDA currents were 4-fold larger. In contrast, even a short exposure to glutamate or NMDA induced the rapid and profound excitotoxic death of most hippocampal neurons in culture. To determine whether RGCs in an intact retina are vulnerable to excitotoxicity, we retrogradely labeled RGCs in vivo using fluorogold and exposed acutely isolated intact retinas to high concentrations of glutamate or NMDA. This produced a substantial and rapid loss of amacrine cells; however, RGCs were not affected. Nonetheless, RGCs expressed NMDA currents in situ that were larger than those reported for amacrine cells. Interestingly, the NMDA receptors expressed by RGCs were extrasynaptically localized both in vitro and in situ. These results indicate that RGCs in vitro and in situ are relatively invulnerable to glutamate and NMDA excitotoxicity compared to amacrine cells, and indicate that important, as yet unidentified, determinants downstream of NMDA receptors control vulnerability to excitotoxicity.


Asunto(s)
Ácido Glutámico/metabolismo , N-Metilaspartato/toxicidad , Neurotoxinas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Amacrinas/citología , Células Amacrinas/efectos de los fármacos , Células Amacrinas/metabolismo , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/fisiología , Colorantes Fluorescentes , Ácido Glutámico/toxicidad , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Neurotoxinas/toxicidad , Ratas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/fisiopatología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Estilbamidinas , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
3.
Mol Cell Neurosci ; 25(2): 241-51, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15019941

RESUMEN

Glia constitute 90% of cells in the human nervous system, but relatively little is known about their functions. We have been focusing on the potential synaptic roles of glia in the CNS. We recently found that astrocytes increase the number of mature, functional synapses on retinal ganglion cells (RGCs) by sevenfold and are required for synaptic maintenance in vitro. These observations raised the question of whether glia similarly enhance synapse formation by other neuron types. Here we have investigated whether highly purified motor neurons isolated from developing rat spinal cords are able to form synapses in the absence of glia or whether glia similarly enhance synapse number. We show that spinal motor neurons (SMNs) form few synapses unless Schwann cells or astrocytes are present. Schwann cells increase the number of functional synapses by ninefold as measured by immunostaining, and increase spontaneous synaptic activity by several hundredfold. Surprisingly, the synapses formed between spinal motor neurons were primarily glutamatergic, as they could be blocked by CNQX. This synapse-promoting activity is not mediated by direct glial-neuronal cell contact but rather is mediated by secreted molecule(s) from the Schwann cells, as we previously found for astrocytes. Interestingly, the synapse-promoting activity from astrocytes and Schwann cells was functionally similar: Schwann cells also promoted synapse formation between retinal ganglion cells, and astrocytes promoted synapse formation between spinal motor neurons. These studies show that both astrocytes and Schwann cells strongly promote synapse formation between spinal motor neurons and demonstrate that glial regulation of synaptogenesis extends to other neuron types.


Asunto(s)
Astrocitos/metabolismo , Neuronas Motoras/citología , Células de Schwann/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Sinapsis/ultraestructura , Animales , Animales Recién Nacidos , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Medio de Cultivo Libre de Suero/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neuronas Motoras/efectos de los fármacos , Factores de Crecimiento Nervioso/metabolismo , Ratas , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Médula Espinal/metabolismo , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
6.
Neuron ; 30(1): 105-19, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11343648

RESUMEN

Na(v)1.6 is the main sodium channel isoform at adult nodes of Ranvier. Here, we show that Na(v)1.2 and its beta2 subunit, but not Na(v)1.6 or beta1, are clustered in developing central nervous system nodes and that clustering of Na(v)1.2 and Na(v)1.6 is differentially controlled. Oligodendrocyte-conditioned medium is sufficient to induce clustering of Na(v)1.2 alpha and beta2 subunits along central nervous system axons in vitro. This clustering is regulated by electrical activity and requires an intact actin cytoskeleton and synthesis of a non-sodium channel protein. Neither soluble- or contact-mediated glial signals induce clustering of Na(v)1.6 or beta1 in a nonmyelinating culture system. These data reveal that the sequential clustering of Na(v)1.2 and Na(v)1.6 channels is differentially controlled and suggest that myelination induces Na(v)1.6 clustering.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Nervio Óptico/crecimiento & desarrollo , Nódulos de Ranvier/metabolismo , Canales de Sodio/metabolismo , Animales , Bioensayo/métodos , Diferenciación Celular/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas/citología , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Nervio Óptico/citología , Nervio Óptico/metabolismo , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Nódulos de Ranvier/ultraestructura , Ratas
7.
Neuron ; 29(3): 603-14, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11301021

RESUMEN

Compared to neurons, the intracellular mechanisms that control glial differentiation are still poorly understood. We show here that oligodendrocyte lineage cells express the helix-loop-helix proteins Mash1 and Id2. Although Mash1 has been found to regulate neuronal development, we found that in the absence of Mash1 oligodendrocyte differentiation occurs normally. In contrast, we found that overexpression of Id2 powerfully inhibits oligodendrocyte differentiation, that Id2 normally translocates out of the nucleus at the onset of differentiation, and that absence of Id2 induces premature oligodendrocyte differentiation in vitro. These findings demonstrate that Id2 is a component of the intracellular mechanism that times oligodendrocyte differentiation and point to the existence of an as yet unidentified MyoD-like bHLH protein necessary for oligodendrocyte differentiation.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/fisiología , Secuencias Hélice-Asa-Hélice , Oligodendroglía/citología , Proteínas Represoras , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , División Celular , Células Cultivadas , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Expresión Génica , Inmunohistoquímica , Proteína 2 Inhibidora de la Diferenciación , Ratones , Ratones Noqueados , Oligodendroglía/química , Oligodendroglía/metabolismo , Nervio Óptico/citología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Ratas , Células Madre/química , Células Madre/metabolismo , Factores de Tiempo , Factores de Transcripción/análisis , Factores de Transcripción/deficiencia , Factores de Transcripción/fisiología , Triyodotironina/farmacología
8.
Science ; 291(5504): 657-61, 2001 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-11158678

RESUMEN

Although astrocytes constitute nearly half of the cells in our brain, their function is a long-standing neurobiological mystery. Here we show by quantal analyses, FM1-43 imaging, immunostaining, and electron microscopy that few synapses form in the absence of glial cells and that the few synapses that do form are functionally immature. Astrocytes increase the number of mature, functional synapses on central nervous system (CNS) neurons by sevenfold and are required for synaptic maintenance in vitro. We also show that most synapses are generated concurrently with the development of glia in vivo. These data demonstrate a previously unknown function for glia in inducing and stabilizing CNS synapses, show that CNS synapse number can be profoundly regulated by nonneuronal signals, and raise the possibility that glia may actively participate in synaptic plasticity.


Asunto(s)
Astrocitos/fisiología , Proteínas de Unión al Calcio , Células Ganglionares de la Retina/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Comunicación Celular , Células Cultivadas , Técnicas de Cocultivo , Potenciales Postsinápticos Excitadores , Colorantes Fluorescentes/metabolismo , Ácido Glutámico/farmacología , Ionomicina/farmacología , Glicoproteínas de Membrana/metabolismo , Microscopía Electrónica , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Técnicas de Placa-Clamp , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/ultraestructura , Colículos Superiores/embriología , Colículos Superiores/crecimiento & desarrollo , Colículos Superiores/ultraestructura , Sinapsis/ultraestructura , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , Sinaptotagminas
9.
J Neurosci ; 21(5): 1538-47, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11222644

RESUMEN

Here we have investigated the mechanisms that control astrocyte differentiation within the developing rat optic nerve. Astrocytes are normally generated by astrocyte precursor cells within the embryonic optic nerve. We show that there is a close temporal and spatial correlation between endothelial and astrocyte differentiation. We tested the potential role of endothelial cells in inducing astrocyte differentiation by developing an immunopanning method to highly purify endothelial cells from developing optic nerves. We show that the purified endothelial cells, but not other embryonic optic nerve cell types, strongly induce the differentiation of purified astrocyte precursor cells into astrocytes in vitro. Leukemia inhibitory factor (LIF) and LIF receptors have been implicated previously in astrocyte differentiation in vivo. We show that purified endothelial cells express LIF mRNA and that their ability to induce astrocyte differentiation is prevented by a neutralizing anti-LIF, but not anti-ciliary neurotrophic factor, antiserum. These findings demonstrate a role for endothelial cells in inducing astrocyte differentiation. The induction of astrocyte differentiation by endothelial cells makes sense phylogenetically, anatomically, and functionally, because astrocytes evolved concurrently with brain vasculature and ensheathe capillaries throughout the brain. The ability to purify and culture astrocytes and endothelial cells should provide an excellent model system for future studies of blood-brain barrier development.


Asunto(s)
Astrocitos/citología , Endotelio Vascular/citología , Interleucina-6 , Animales , Anticuerpos/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Separación Celular , Células Cultivadas , Factor Neurotrófico Ciliar/antagonistas & inhibidores , Factor Neurotrófico Ciliar/biosíntesis , Factor Neurotrófico Ciliar/farmacología , Técnicas de Cocultivo , Colorantes , Endotelio Vascular/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Inhibidores de Crecimiento/antagonistas & inhibidores , Inhibidores de Crecimiento/biosíntesis , Inhibidores de Crecimiento/genética , Inhibidores de Crecimiento/farmacología , Factor Inhibidor de Leucemia , Linfocinas/antagonistas & inhibidores , Linfocinas/biosíntesis , Linfocinas/genética , Linfocinas/farmacología , Nervio Óptico/irrigación sanguínea , Nervio Óptico/citología , Nervio Óptico/embriología , Piamadre/citología , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Células Madre/citología , Células Madre/efectos de los fármacos , Factor de von Willebrand/metabolismo
10.
Curr Opin Neurobiol ; 10(5): 642-8, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11084327

RESUMEN

Here, we review progress in our understanding of neuronal and glial cell biology during the past ten years, with an emphasis on glial cell fate specification, apoptosis, the cytoskeleton, neuronal polarity, synaptic vesicle recycling and targeting, regulation of the cytoskeleton by extracellular signals, and neuron-glia interactions.


Asunto(s)
Neuroglía/fisiología , Neuronas/fisiología , Animales , Apoptosis/fisiología , Citoesqueleto/metabolismo , Citoesqueleto/fisiología , Humanos , Neuroglía/metabolismo , Neuronas/metabolismo
12.
Annu Rev Neurosci ; 23: 579-612, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10845076

RESUMEN

The ability of peripheral nervous system (PNS) but not central nervous system (CNS) neurons to regenerate their axons is a striking peculiarity of higher vertebrates. Much research has focused on the inhibitory signals produced by CNS glia that thwart regenerating axons. Less attention has been paid to the injury-induced loss of trophic stimuli needed to promote the survival and regeneration of axotomized neurons. Could differences in the mechanisms that control CNS and PNS neuronal survival and growth also contribute to the disparity in regenerative capacity? Here we review recent studies concerning the nature of the signals necessary to promote neuronal survival and growth, with an emphasis on their significance to regeneration after CNS injury.


Asunto(s)
Regeneración Nerviosa/fisiología , Neuronas/fisiología , Animales , Atrofia , Axones/fisiología , Axotomía , Supervivencia Celular/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiología , Electrofisiología , Modelos Neurológicos , Neuroglía/fisiología , Nervios Periféricos/citología , Nervios Periféricos/fisiología , Transducción de Señal
14.
Mol Cell Neurosci ; 14(4-5): 385-97, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10588392

RESUMEN

In order to study the signals that control the onset of myelination, we cocultured highly purified postnatal retinal ganglion cells and optic nerve oligodendrocytes under serum-free conditions that promote their survival for at least a month and found that no myelination occurred. Although the addition of optic nerve astrocytes induced the oligodendrocyte processes to align with, and adhere to, axons, myelination still did not occur. The effect of astrocytes was mimicked by removal of polysialic acid from both cell types using neuroaminidase. These findings provide evidence for a novel role for astrocytes in controlling the onset of myelination by promoting adhesion of oligodendrocyte processes to axons. They also suggest that other, as yet unidentified, cell-cell interactions are necessary to induce the myelination process itself.


Asunto(s)
Astrocitos/citología , Axones/fisiología , Comunicación Celular/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/citología , Animales , Astrocitos/fisiología , Axones/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Potenciales de la Membrana/fisiología , Neuraminidasa , Oligodendroglía/fisiología , Nervio Óptico/citología , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/ultraestructura , Ácidos Siálicos/metabolismo , Colículos Superiores/citología , Tetrodotoxina/farmacología
16.
Neuron ; 23(2): 285-95, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10399935

RESUMEN

Whereas PNS neurons in culture are intrinsically responsive to peptide trophic factors, retinal ganglion cells (RGCs) are not unless they are depolarized, or their intracellular levels of cyclic AMP (cAMP) are elevated. We show here that depolarization increases cAMP in cultured RGCs sufficiently to enhance their responsiveness and that the trophic responsiveness of developing RGCs in intact retinas depends on physiological levels of activity and cAMP elevation. Responsiveness is lost after axotomy but is restored by cAMP elevation. The death of axotomized RGCs can be prevented if they are simultaneously stimulated by several trophic factors together with cAMP elevation. Thus, the death of RGCs after axotomy is not caused solely by the loss of retrograde trophic stimuli but also by a profound loss of trophic responsiveness.


Asunto(s)
Factores de Crecimiento Nervioso/fisiología , Células Ganglionares de la Retina/fisiología , Inhibidores de Adenilato Ciclasa , Animales , Axotomía , Muerte Celular , Núcleo Celular/enzimología , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/metabolismo , Electrofisiología , Técnica del Anticuerpo Fluorescente , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ratas , Ratas Sprague-Dawley
18.
J Neurosci ; 19(3): 1049-61, 1999 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-9920668

RESUMEN

The signaling interactions that control oligodendrocyte generation from their precursor cells have been studied intensively. Much less is known about how astrocyte generation is normally controlled. Here we report the purification and characterization of astrocyte precursor cells (APCs) from the developing rat optic nerve. APCs are antigenically distinct from astrocytes. Both cell types are Pax2(+) and vimentin+, whereas astrocytes are GFAP+ and S100beta+, and the precursor cells are A2B5(+). In contrast to purified astrocytes, purified APCs rapidly die in serum-free culture but can be saved by basic fibroblast growth factor (bFGF) and glial growth factor 2 (GGF2). Unlike oligodendrocyte precursor cells, APCs do not differentiate by default; their differentiation into GFAP+ cells is induced by ciliary neurotrophic factor (CNTF) or by leukemia inhibitory factor (LIF). Finally, the survival, proliferation, and differentiation of APCs were promoted by coculture with other embryonic optic nerve cell types but not with purified embryonic retinal ganglion cells, indicating that interactions with non-neuronal cells are likely to play an important role in controlling astrocyte generation in the developing optic nerve.


Asunto(s)
Astrocitos/citología , Astrocitos/fisiología , Interleucina-6 , Nervio Óptico/citología , Células Madre/citología , Células Madre/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Antígenos/análisis , Astrocitos/inmunología , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Separación Celular , Supervivencia Celular/fisiología , Factor Neurotrófico Ciliar , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor de Maduración de la Glia , Inhibidores de Crecimiento/farmacología , Factor Inhibidor de Leucemia , Linfocinas/farmacología , Proteínas del Tejido Nervioso/farmacología , Nervio Óptico/embriología , Nervio Óptico/crecimiento & desarrollo , Ratas , Ratas Sprague-Dawley , Células Madre/inmunología
20.
Neuron ; 21(4): 681-93, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9808456

RESUMEN

Here, we describe a novel mechanism for the rapid regulation of surface levels of the neurotrophin receptor TrkB. Unlike nodose ganglion neurons, both retinal ganglion cells (RGCs) and spinal motor neurons (SMNs) in culture display only low levels of surface TrkB, though high levels are present intracellularly. Within minutes of depolarization or cAMP elevation, surface TrkB levels increase by nearly 4-fold, and this increase is not blocked by cycloheximide. These findings suggest that activity and cAMP elevation rapidly recruit TrkB to the plasma membrane by translocation from intracellular stores. We propose that a fundamental difference between peripheral nervous system (PNS) and central nervous system (CNS) neurons is the activity dependence of CNS neurons for responsiveness to their peptide trophic factors and that differences in membrane compartmentalization of the receptors underlie this difference.


Asunto(s)
AMP Cíclico/metabolismo , Neuronas Motoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Células Ganglionares de la Retina/metabolismo , Médula Espinal/metabolismo , Animales , Transporte Biológico/fisiología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Membrana Celular/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Electrofisiología , Factores de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Nervios Periféricos/citología , Nervios Periféricos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Factor Neurotrófico Ciliar , Médula Espinal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...