Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 904: 166879, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678533

RESUMEN

This paper assesses whether moving summer holidays to the warmest period of the year in Spain could be a useful climate change adaptation strategy. While the most popular period for Spanish summer holidays has traditionally been August, we illustrate that the second half of July is the hottest period of the year and when the negative effects of high temperatures are most pronounced. If the holiday period in the second fortnight of August was moved to the second fortnight of July, some of the associated impacts would be mitigated due to the reduced anthropogenic activity during non-working days. In particular, we find a significant reduction in the annual peak of labour productivity loss (~25 %) and, to a lesser extent, of electricity demand and near-surface ozone concentrations (~3-4 %). Finally, we also show that global warming could lead to enhanced differences between both fortnights (even with no change in the seasonal cycle of temperature) because of the non-linear relationships between temperature and its impacts. Therefore, the positive effect of shifting holidays would be even larger in the coming future.

2.
Sci Data ; 10(1): 402, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353567

RESUMEN

Documentary climate data describe evidence of past climate arising from predominantly written historical documents such as diaries, chronicles, newspapers, or logbooks. Over the past decades, historians and climatologists have generated numerous document-based time series of local and regional climates. However, a global dataset of documentary climate time series has never been compiled, and documentary data are rarely used in large-scale climate reconstructions. Here, we present the first global multi-variable collection of documentary climate records. The dataset DOCU-CLIM comprises 621 time series (both published and hitherto unpublished) providing information on historical variations in temperature, precipitation, and wind regime. The series are evaluated by formulating proxy forward models (i.e., predicting the documentary observations from climate fields) in an overlapping period. Results show strong correlations, particularly for the temperature-sensitive series. Correlations are somewhat lower for precipitation-sensitive series. Overall, we ascribe considerable potential to documentary records as climate data, especially in regions and seasons not well represented by early instrumental data and palaeoclimate proxies.

3.
Sci Rep ; 10(1): 7900, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404961

RESUMEN

In the Era of exponential data generation, increasing the number of paleoclimate records to improve climate field reconstructions might not always be the best strategy. By using pseudo-proxies from different model ensembles, we show how biologically-inspired artificial intelligence can be coupled with different reconstruction methods to minimize the spatial bias induced by the non-homogeneous distribution of available proxies. The results indicate that small subsets of records situated over representative locations can outperform the reconstruction skill of the full proxy network, even in more realistic pseudo-proxy experiments and observational datasets. These locations highlight the importance of high-latitude regions and major teleconnection areas to reconstruct annual global temperature fields and their responses to external forcings and internal variability. However, low frequency temperature variations such as the transition between the Medieval Climate Anomaly and the Little Ice Age are better resolved by records situated at lower latitudes. According to our idealized experiments a careful selection of proxy locations should be performed depending on the targeted time scale of the reconstructed field.

4.
Clim Dyn ; 52(5): 3291-3306, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956409

RESUMEN

While Regional Climate Models (RCMs) have been shown to yield improved simulations compared to General Circulation Model (GCM), their representation of large-scale phenomena like atmospheric blocking has been hardly addressed. Here, we evaluate the ability of RCMs to simulate blocking situations present in their reanalysis driving data and analyse the associated impacts on anomalies and biases of European 2-m air temperature (TAS) and precipitation rate (PR). Five RCM runs stem from the EURO-CORDEX ensemble while three RCMs are WRF models with different nudging realizations, all of them driven by ERA-Interim for the period 1981-2010. The detected blocking systems are allocated to three sectors of the Euro-Atlantic region, allowing for a characterization of distinctive blocking-related TAS and PR anomalies. Our results indicate some misrepresentation of atmospheric blocking over the EURO-CORDEX domain, as compared to the driving reanalysis. Most of the RCMs showed fewer blocks than the driving data, while the blocking misdetection was negligible for RCMs strongly conditioned to the driving data. A higher resolution of the RCMs did not improve the representation of atmospheric blocking. However, all RCMs are able to reproduce the basic anomaly structure of TAS and PR connected to blocking. Moreover, the associated anomalies do not change substantially after correcting for the misrepresentation of blocking in RCMs. The overall model bias is mainly determined by pattern biases in the representations of surface parameters during non-blocking situations. Biases in blocking detections tend to have a secondary influence in the overall bias due to compensatory effects of missed blockings and non-blockings. However, they can lead to measurable effects in the presence of a strong blocking underestimation.

5.
Ann N Y Acad Sci ; 1436(1): 206-216, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29968302

RESUMEN

In this study, we analyze the linkage between atmosphere and ocean modes and winter flood variability over the 20th century based on long-term flow-discharge series, historical archives, and tree-ring records of past floods in the North Atlantic Basin (NAB). The most extreme winter floods occurred in 1936 and had strong impacts on either side of the Atlantic. We hypothesize that the joint effects of sea surface temperatures (SSTs) over the Atlantic and Pacific Oceans and the Arctic Oscillation (AO), which is closely related to the North Atlantic Oscillation, play a significant role when describing flood variability in North America and Europe since 1900. Statistical modeling supports the assumption that the response of flood anomalies over the NAB to AO phases is subsidiary of SST phases. Besides, we shed light on the extraordinarily winter flood of 1936 that was characterized by very high SSTs over both the Atlantic and Pacific (>98th percentile) and very low, negative values of AO (<1st percentile). This outstanding winter flood episode was most likely characterized by stratospheric polar vortex anomalies, which can usually be linked to an increased probability of storms in western and southwestern Europe and increased snowfall events in eastern North America. By assessing the flood anomalies over the NAB as a coupled AO and SST function, one could further the understanding of such large-scale events and presumably improve anticipation of future extreme flood occurrences.


Asunto(s)
Inundaciones/historia , Modelos Teóricos , Estaciones del Año , Océano Atlántico , Europa (Continente) , Historia del Siglo XX , Historia del Siglo XXI , América del Norte
6.
Sci Total Environ ; 645: 1238-1252, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30248849

RESUMEN

This paper characterizes the spatiotemporal variability of air stagnation over the Euro-Mediterranean area for the 1979-2016 period by using a simplified air stagnation index (ASI) based on daily precipitation as well as near-surface and upper wind speed data. We have also undertaken the first comparison of stagnation as derived from meteorological reanalysis and observations, finding a reasonably good agreement between both datasets. The main differences arise from the surface wind speed, as this field depends on the local setting of the observational sites and imperfect parameterizations within the reanalysis model. Since air stagnation has considerable spatial heterogeneity over the region, we have regionalized the monthly frequency of stagnant days, resulting five regions with consistent temporal patterns: Scandinavia (SCAN), Northern-Europe (NEU), Central-Europe (CEU), South-West (SW) and South-East (SE). The northern regions (SCAN and NEU), which are affected by moderately strong near-surface winds and ample precipitation, present low frequency and temporal variability in stagnation compared to the southern regions (SW and SE). The winters and summers with the highest stagnation frequency often concur with positive 500 hPa geopotential height anomalies over the regions, with the exception of negative anomalies and a displacement of the extratropical jet to the south in the case of SCAN and NEU during winter. Air stagnation exerts a clear influence on air quality (AQ), with anomalies above 10% for summer ozone (O3) and 30% for winter PM10 (particulate matter ≤10 µm in diameter) on stagnant vs. non-stagnant days over most of the regions. These values exceed 20% and 50%, respectively, in the case of CEU, where air stagnation also drives significant changes in the frequency distributions of these pollutants and increases the likelihood of AQ exceedances. Moreover, persistent and widespread stagnation events favour the build-up of both O3 and PM10 over most of the continent.

7.
Curr Clim Change Rep ; 4(3): 287-300, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30956938

RESUMEN

PURPOSE OF REVIEW: Atmospheric blocking events represent some of the most high-impact weather patterns in the mid-latitudes, yet they have often been a cause for concern in future climate projections. There has been low confidence in predicted future changes in blocking, despite relatively good agreement between climate models on a decline in blocking. This is due to the lack of a comprehensive theory of blocking and a pervasive underestimation of blocking occurrence by models. This paper reviews the state of knowledge regarding blocking under climate change, with the aim of providing an overview for those working in related fields. RECENT FINDINGS: Several avenues have been identified by which blocking can be improved in numerical models, though a fully reliable simulation remains elusive (at least, beyond a few days lead time). Models are therefore starting to provide some useful information on how blocking and its impacts may change in the future, although deeper understanding of the processes at play will be needed to increase confidence in model projections. There are still major uncertainties regarding the processes most important to the onset, maintenance and decay of blocking and advances in our understanding of atmospheric dynamics, for example in the role of diabatic processes, continue to inform the modelling and prediction efforts. SUMMARY: The term 'blocking' covers a diverse array of synoptic patterns, and hence a bewildering range of indices has been developed to identify events. Results are hence not considered fully trustworthy until they have been found using several different methods. Examples of such robust results are the underestimation of blocking by models, and an overall decline in future occurrence, albeit with a complex regional and seasonal variation. In contrast, hemispheric trends in blocking over the recent historical period are not supported by different methods, and natural variability will likely dominate regional variations over the next few decades.

8.
Science ; 332(6026): 220-4, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21415316

RESUMEN

The summer of 2010 was exceptionally warm in eastern Europe and large parts of Russia. We provide evidence that the anomalous 2010 warmth that caused adverse impacts exceeded the amplitude and spatial extent of the previous hottest summer of 2003. "Mega-heatwaves" such as the 2003 and 2010 events likely broke the 500-year-long seasonal temperature records over approximately 50% of Europe. According to regional multi-model experiments, the probability of a summer experiencing mega-heatwaves will increase by a factor of 5 to 10 within the next 40 years. However, the magnitude of the 2010 event was so extreme that despite this increase, the likelihood of an analog over the same region remains fairly low until the second half of the 21st century.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...