Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(1): 285-295, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614285

RESUMEN

Climate models predict that, in the coming decades, many arid regions will experience increasingly hot conditions and will be affected more frequently by drought. These regions are also experiencing rapid vegetation change, notably invasion by exotic grasses. Invasive grasses spread rapidly into native desert ecosystems due, in particular, to interannual variability in precipitation and periodic fires. The resultant destruction of non-fire-adapted native shrub and grass communities and of the inherent soil resource heterogeneity can yield invader-dominated grasslands. Moreover, recurrent droughts are expected to cause widespread physiological stress and mortality of both invasive and native plants, as well as the loss of soil resources. However, the magnitude of these effects may differ between invasive and native grasses, especially under warmer conditions, rendering the trajectory of vegetated communities uncertain. Using the Biosphere 2 facility in the Sonoran Desert, we evaluated the viability of these hypothesized relationships by simulating combinations of drought and elevated temperature (+5°C) and assessing the ecophysiological and mortality responses of both a dominant invasive grass (Pennisetum ciliare or buffelgrass) and a dominant native grass (Heteropogan contortus or tanglehead). While both grasses survived protracted drought at ambient temperatures by inducing dormancy, drought under warmed conditions exceeded the tolerance limits of the native species, resulting in greater and more rapid mortality than exhibited by the invasive. Thus, two major drivers of global environmental change, biological invasion and climate change, can be expected to synergistically accelerate ecosystem degradation unless large-scale interventions are enacted.


Asunto(s)
Cambio Climático , Ecosistema , Modelos Climáticos , Clima Desértico , Sequías , Poaceae
2.
Tree Physiol ; 41(10): 1893-1905, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-33823053

RESUMEN

Tracking wood formation in semiarid regions during the seasonal march of precipitation extremes has two important applications. It can provide (i) insight into the adaptive capacities of trees to drought and (ii) a basis for a richer interpretation of tree-ring data, assisting in a deeper understanding of past and current climate. In the southwestern USA, the anatomical signature of seasonally bimodal precipitation is the 'false ring'-a band of latewood-like cells in the earlywood. These occur when a particularly deep drought during the early growing season ends abruptly with timely, mid-growing season monsoonal rains. Such conditions presented in southern Arizona in 2014, enabling us to explore false-ring formation in ponderosa pine (Pinus ponderosa Lawson and C. Lawson) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) in mixed-conifer forest at 2573 m above sea level. We ask: what were the cell-by-cell timings and durations in the phases of wood cell development in 2014? How do these seasonal patterns relate to strongly fluctuating environmental conditions during the growing season? We took weekly microcores from March through November from six ponderosa pine and seven Douglas-fir trees at a well-instrumented flux tower site. Thin sections were prepared, and we counted cells in cambial, expansion, cell wall thickening and mature phases. For ponderosa pine trees forming a false ring, the first impact of intensifying seasonal drought was seen in the enlarging phase and then, almost a month later, in cambial activity. In this species, recovery from drought was associated with recovery first in cambial activity, followed by cell enlargement. This timing raised the possibility that cell division may be affected by atmospheric moisture increases before soil recharge. In both species, the last false-ring cells matured during the summer rainy season. Bimodal cambial activity coincident with moisture availability was observed in both species, whether or not they formed a false ring. This deeper knowledge of the precise timing of both developmental and environmental events should help define mechanistic connections among these factors in creating bimodal growth patterns.


Asunto(s)
Pinus ponderosa , Pseudotsuga , Arizona , Clima , Pinus ponderosa/crecimiento & desarrollo , Pseudotsuga/crecimiento & desarrollo , Lluvia , Árboles/crecimiento & desarrollo
3.
Curr Biol ; 31(6): 1344-1350.e3, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33626328

RESUMEN

Intraspecific competition among parasites should, in theory, increase virulence, but we lack clear evidence of this from nature.1-3 Parasitic plants, which are sessile and acquire carbon-based resources through both autotrophy (photosynthesis) and heterotrophy (obtaining carbon from the host), provide a unique opportunity to experimentally study the role of intraspecific competition for nutrients in shaping the biology of both parasite and host.4-6 Here, we manipulated the spatial position of naturally occurring individuals of desert mistletoe (Phoradendron californicum), a xylem hemiparasite, by removing parasites from co-infected branches of a common nitrogen-fixing host, velvet mesquite (Prosopsis velutina), in the Sonoran Desert. We measured physiological performance of both host and parasite individuals under differing competitive environments-parasite location along the xylem stream-through time. Performance was determined by measuring resource availability and use, given that resource demand changed with competitor removal and monsoon-driven amelioration of seasonal drought. Our principal finding was that intraspecific competition exists for xylem resources between mistletoe individuals, including host carbon. Host performance and seasonal climate variation altered the strength of competition and virulence. Hemiparasitic desert mistletoes demonstrated high heterotrophy, yet experimental removals revealed density- and location-dependent effects on the host through feedbacks that reduced mistletoe autotrophy and improved resource availability for the remaining mistletoe individual. Trophic flexibility tempered intraspecific competition for resources and reduced virulence. Mistletoe co-infections might therefore attenuate virulence to maintain access to resources in particularly stressful ecological environments. In summary, experimental field manipulations revealed evidence for intraspecific competition in a parasite species.


Asunto(s)
Fabaceae/fisiología , Phoradendron/parasitología , Procesos Autotróficos , Carbono , Clima , Interacciones Huésped-Parásitos , Nitrógeno , Estaciones del Año
4.
FEMS Microbiol Lett ; 368(4)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33547887

RESUMEN

Transition from historic grasslands to woody plants in semiarid regions has led to questions about impacts on soil functioning, where microorganisms play a primary role. Understanding the relationship between microbes, plant diversity and soil functioning is relevant to assess such impacts. We evaluate the effect that plant type change in semiarid ecosystems has for microbial diversity and composition, and how this is related to carbon mineralization (CMIN) as a proxy for soil functioning. We followed a mesocosm experiment during 2 years within the Biosphere 2 facility in Oracle, AZ, USA. Two temperature regimes were established with two types of plants (grass or mesquite). Soil samples were analyzed for physicochemical and functional parameters, as well as microbial community composition using 16S rRNA amplicon metagenomics (Illumina MiSeq). Our results show the combined role of plant type and temperature regime in CMIN, where CMIN in grass has lower values at elevated temperatures compared with the opposite trend in mesquite. We also found a strong correlation of microbial composition with plant type but not with temperature regime. Overall, we provide evidence of the major effect of plant type in the specific composition of microbial communities as a potential result of the shrub encroachment.


Asunto(s)
Carbono/metabolismo , Ecosistema , Microbiota , Microbiología del Suelo , Carbono/análisis , Plantas/clasificación , Plantas/metabolismo , Plantas/microbiología , Suelo/química , Temperatura
5.
Sci Data ; 7(1): 306, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934240

RESUMEN

Land-atmosphere interactions at different temporal and spatial scales are important for our understanding of the Earth system and its modeling. The Landscape Evolution Observatory (LEO) at Biosphere 2, managed by the University of Arizona, hosts three nearly identical artificial bare-soil hillslopes with dimensions of 11 × 30 m2 (1 m depth) in a controlled and highly monitored environment within three large greenhouses. These facilities provide a unique opportunity to explore these interactions. The dataset presented here is a subset of the measurements in each LEO's hillslopes, from 1 July 2015 to 30 June 2019 every 15 minutes, consisting of temperature, water content and heat flux of the soil (at 5 cm depth) for 12 co-located points; temperature, relative humidity and wind speed above ground at 5 locations and 5 different heights ranging from 0.25 m to 9-10 m; 3D wind at 1 location; the four components of radiation at 2 locations; spatially aggregated precipitation rates, total subsurface discharge, and relative water storage; and the measurements from a weather station outside the greenhouses.

6.
Glob Chang Biol ; 26(12): 6945-6958, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32886444

RESUMEN

High-elevation montane forests are disproportionately important to carbon sequestration in semiarid climates where low elevations are dry and characterized by low carbon density ecosystems. However, these ecosystems are increasingly threatened by climate change with seasonal implications for photosynthesis and forest growth. As a result, we leveraged eddy covariance data from six evergreen conifer forest sites in the semiarid western United States to extrapolate the status of carbon sequestration within a framework of projected warming and drying. At colder locations, the seasonal evolution of gross primary productivity (GPP) was characterized by a single broad maximum during the summer that corresponded to snow melt-derived moisture and a transition from winter dormancy to spring activity. Conversely, winter dormancy was transient at warmer locations, and GPP was responsive to both winter and summer precipitation such that two distinct GPP maxima were separated by a period of foresummer drought. This resulted in a predictable sequence of primary limiting factors to GPP beginning with air temperature in winter and proceeding to moisture and leaf area during the summer. Due to counteracting winter (positive) and summer (negative) GPP responses to warming, leaf area index and moisture availability were the best predictors of annual GPP differences across sites. Overall, mean annual GPP was greatest at the warmest site due to persistent vegetation photosynthetic activity throughout the winter. These results indicate that the trajectory of this region's carbon sequestration will be sensitive to reduced or delayed summer precipitation, especially if coupled to snow drought and earlier soil moisture recession, but summer precipitation changes remain highly uncertain. Given the demonstrated potential for seasonally offsetting responses to warming, we project that decadal semiarid montane forest carbon sequestration will remain relatively stable in the absence of severe disturbance.


Asunto(s)
Ecosistema , Bosques , Carbono , Cambio Climático , Estaciones del Año , Nieve
7.
Tree Physiol ; 40(10): 1343-1354, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32597974

RESUMEN

Semiarid forests in the southwestern USA are generally restricted to mountain regions where complex terrain adds to the challenge of characterizing stand productivity. Among the heterogeneous features of these ecosystems, topography represents an important control on system-level processes including snow accumulation and melt. This basic relationship between geology and hydrology affects radiation and water balances within the forests, with implications for canopy structure and function across a range of spatial scales. In this study, we quantify the effect of topographic aspect on primary productivity by observing the response of two codominant native tree species to seasonal changes in the timing and magnitude of energy and water inputs throughout a montane headwater catchment in Arizona, USA. On average, soil moisture on north-facing aspects remained higher during the spring and early summer compared with south-facing aspects. Repeated measurements of net carbon assimilation (Anet) showed that Pinus ponderosa C. Lawson was sensitive to this difference, while Pseudotsuga menziesii (Mirb.) Franco was not. Irrespective of aspect, we observed seasonally divergent patterns at the species level where P. ponderosa maintained significantly greater Anet into the fall despite more efficient water use by P. menziesii individuals during that time. As a result, this study at the southern extent of the geographical P. menziesii distribution suggests that this species could increase water-use efficiency as a response to future warming and/or drying, but at lower rates of production relative to the more drought-adapted P. ponderosa. At the sub-landscape scale, opposing aspects served as a mesocosm of current versus anticipated climate conditions. In this way, these results also constrain the potential for changing carbon sequestration patterns from Pinus-dominated landscapes due to forecasted changes in seasonal moisture availability.


Asunto(s)
Ecosistema , Bosques , Arizona , Estaciones del Año , Árboles
9.
Sci Rep ; 10(1): 905, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969580

RESUMEN

Ecosystem carbon flux partitioning is strongly influenced by poorly constrained soil CO2 efflux (Fsoil). Simple model applications (Arrhenius and Q10) do not account for observed diel hysteresis between Fsoil and soil temperature. How this hysteresis emerges and how it will respond to variation in vegetation or soil moisture remains unknown. We used an ecosystem-level experimental system to independently control potential abiotic and biotic drivers of the Fsoil-T hysteresis. We hypothesized a principally biological cause for the hysteresis. Alternatively, Fsoil hysteresis is primarily driven by thermal convection through the soil profile. We conducted experiments under normal, fluctuating diurnal soil temperatures and under conditions where we held soil temperature near constant. We found (i) significant and nearly equal amplitudes of hysteresis regardless of soil temperature regime, and (ii) the amplitude of hysteresis was most closely tied to baseline rates of Fsoil, which were mostly driven by photosynthetic rates. Together, these findings suggest a more biologically-driven mechanism associated with photosynthate transport in yielding the observed patterns of soil CO2 efflux being out of sync with soil temperature. These findings should be considered on future partitioning models of ecosystem respiration.

10.
Proc Natl Acad Sci U S A ; 117(3): 1596-1605, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31907313

RESUMEN

Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.


Asunto(s)
Atmósfera , Hemiterpenos/biosíntesis , Hibridación Genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Contaminación del Aire , Arizona , Biocombustibles , Biomasa , Butadienos , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Clima , Oregon , Fotosíntesis , Hojas de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Populus/genética , Proteoma , Interferencia de ARN , Estaciones del Año , Estrés Fisiológico , Terpenos/metabolismo , Termotolerancia/fisiología , Madera
11.
Sci Rep ; 8(1): 13518, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202073

RESUMEN

Soil CO2 efflux (Fsoil) is commonly considered equal to soil CO2 production (Rsoil), and both terms are used interchangeably. However, a non-negligible fraction of Rsoil can be consumed in the subsurface due to a host of disparate, yet simultaneous processes. The ratio between CO2 efflux/O2 influx, known as the apparent respiratory quotient (ARQ), enables new insights into CO2 losses from Rsoil not previously captured by Fsoil. We present the first study using continuous ARQ estimates to evaluate annual CO2 losses of carbon produced from Rsoil. We found that up to 1/3 of Rsoil was emitted directly to the atmosphere, whereas 2/3 of Rsoil was removed by subsurface processes. These subsurface losses are attributable to dissolution in water, biological activities and chemical reactions. Having better estimates of Rsoil is key to understanding the true influence of ecosystem production on Rsoil, as well as the role of soil CO2 production in other connected processes within the critical zone.

12.
PLoS One ; 12(12): e0189539, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29281709

RESUMEN

Earth's future carbon balance and regional carbon exchange dynamics are inextricably linked to plant photosynthesis. Spectral vegetation indices are widely used as proxies for vegetation greenness and to estimate state variables such as vegetation cover and leaf area index. However, the capacity of green leaves to take up carbon can change throughout the season. We quantify photosynthetic capacity as the maximum rate of RuBP carboxylation (Vcmax) and regeneration (Jmax). Vcmax and Jmax vary within-season due to interactions between ontogenetic processes and meteorological variables. Remote sensing-based estimation of Vcmax and Jmax using leaf reflectance spectra is promising, but temporal variation in relationships between these key determinants of photosynthetic capacity, leaf reflectance spectra, and the models that link these variables has not been evaluated. To address this issue, we studied hybrid poplar (Populus spp.) during a 7-week mid-summer period to quantify seasonally-dynamic relationships between Vcmax, Jmax, and leaf spectra. We compared in situ estimates of Vcmax and Jmax from gas exchange measurements to estimates of Vcmax and Jmax derived from partial least squares regression (PLSR) and fresh-leaf reflectance spectroscopy. PLSR models were robust despite dynamic temporal variation in Vcmax and Jmax throughout the study period. Within-population variation in plant stress modestly reduced PLSR model predictive capacity. Hyperspectral vegetation indices were well-correlated to Vcmax and Jmax, including the widely-used Normalized Difference Vegetation Index. Our results show that hyperspectral estimation of plant physiological traits using PLSR may be robust to temporal variation. Additionally, hyperspectral vegetation indices may be sufficient to detect temporal changes in photosynthetic capacity in contexts similar to those studied here. Overall, our results highlight the potential for hyperspectral remote sensing to estimate determinants of photosynthetic capacity during periods with dynamic temporal variations related to seasonality and plant stress, thereby improving estimates of plant productivity and characterization of the associated carbon budget.


Asunto(s)
Fotosíntesis , Hojas de la Planta/fisiología , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Análisis de Regresión , Estaciones del Año
13.
Nat Ecol Evol ; 1(9): 1285-1291, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29046541

RESUMEN

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.


Asunto(s)
Carbono/deficiencia , Sequías , Transpiración de Plantas/fisiología , Árboles/fisiología , Xilema/fisiología , Cambio Climático , Cycadopsida/fisiología , Magnoliopsida/fisiología , Dinámica Poblacional , Estrés Fisiológico
14.
New Phytol ; 215(4): 1451-1461, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28737219

RESUMEN

A long-standing ambition in ecosystem science has been to understand the relationship between ecosystem community composition, structure and function. Differential water use and hydraulic redistribution have been proposed as one mechanism that might allow for the coexistence of overstory woody plants and understory grasses. Here, we investigated how patterns of hydraulic redistribution influence overstory and understory ecophysiological function and how patterns vary across timescales of an individual precipitation event to an entire growing season. To this end, we linked measures of sap flux within lateral and tap roots, leaf-level photosynthesis, ecosystem-level carbon exchange and soil carbon dioxide efflux with local meteorology data. The hydraulic redistribution regime was characterized predominantly by hydraulic descent relative to hydraulic lift. We found only a competitive interaction between the overstory and understory, regardless of temporal time scale. Overstory trees used nearly all water lifted by the taproot to meet their own transpirational needs. Our work suggests that alleviating water stress is not the reason we find grasses growing in the understory of woody plants; rather, other stresses, such as excessive light and temperature, are being ameliorated. As such, both the two-layer model and stress gradient hypothesis need to be refined to account for this coexistence in drylands.


Asunto(s)
Clima Desértico , Pradera , Árboles/fisiología , Agua , Dióxido de Carbono/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Suelo/química , Temperatura
15.
Sci Rep ; 6: 35070, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27733772

RESUMEN

While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a "heat island" (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3-4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

16.
Ecol Lett ; 18(3): 221-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25522778

RESUMEN

The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18-28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time-series data and facilitating new hypothesis generation and additional research.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Ecosistema , Modelos Biológicos , Tiempo , Árboles , Teorema de Bayes , Modelos Estadísticos , Suelo , Procesos Estocásticos
17.
Glob Chang Biol ; 20(7): 2198-210, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24777485

RESUMEN

The combined effects of vegetation and climate change on biosphere-atmosphere water vapor (H2 O) and carbon dioxide (CO2 ) exchanges are expected to vary depending, in part, on how biotic activity is controlled by and alters water availability. This is particularly important when a change in ecosystem composition alters the fractional covers of bare soil, grass, and woody plants so as to influence the accessibility of shallower vs. deeper soil water pools. To study this, we compared 5 years of eddy covariance measurements of H2 O and CO2 fluxes over a riparian grassland, shrubland, and woodland. In comparison with the surrounding upland region, groundwater access at the riparian sites increased net carbon uptake (NEP) and evapotranspiration (ET), which were sustained over more of the year. Among the sites, the grassland used less of the stable groundwater resource, and increasing woody plant density decoupled NEP and ET from incident precipitation (P), resulting in greater exchange rates that were less variable year to year. Despite similar gross patterns, how groundwater accessibility affected NEP was more complex than ET. The grassland had higher respiration (Reco ) costs. Thus, while it had similar ET and gross carbon uptake (GEP) to the shrubland, grassland NEP was substantially less. Also, grassland carbon fluxes were more variable due to occasional flooding at the site, which both stimulated and inhibited NEP depending upon phenology. Woodland NEP was large, but surprisingly similar to the less mature, sparse shrubland, even while having much greater GEP. Woodland Reco was greater than the shrubland and responded strongly and positively to P, which resulted in a surprising negative NEP response to P. This is likely due to the large accumulation of carbon aboveground and in the surface soil. These long-term observations support the strong role that water accessibility can play when determining the consequences of ecosystem vegetation change.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Ecosistema , Ciclo Hidrológico , Arizona , Bosques , Pradera , Estaciones del Año
18.
New Phytol ; 202(2): 442-454, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24417567

RESUMEN

Understanding how exogenous and endogenous factors and above-ground-below-ground linkages modulate carbon dynamics is difficult because of the influences of antecedent conditions. For example, there are variable lags between above-ground assimilation and below-ground efflux, and the duration of antecedent periods are often arbitrarily assigned. Nonetheless, developing models linking above- and below-ground processes is crucial for estimating current and future carbon dynamics. We collected data on leaf-level photosynthesis (Asat ) and soil respiration (Rsoil ) in different microhabitats (under shrubs vs under bunchgrasses) in the Sonoran Desert. We evaluated timescales over which endogenous and exogenous factors control Rsoil by analyzing data in the context of a semimechanistic temperature-response model of Rsoil that incorporated effects of antecedent exogenous (soil water) and endogenous (Asat ) conditions. For both microhabitats, antecedent soil water and Asat significantly affected Rsoil , but Rsoil under shrubs was more sensitive to Asat than that under bunchgrasses. Photosynthetic rates 1 and 3 d before the Rsoil measurement were most important in determining current-day Rsoil under bunchgrasses and shrubs, respectively, indicating a significant lag effect. Endogenous and exogenous controls are critical drivers of Rsoil , but the relative importance and the timescale over which each factor affects Rsoil depends on above-ground vegetation and ecosystem structure characteristics.


Asunto(s)
Dióxido de Carbono/fisiología , Carbono/fisiología , Ecosistema , Fotosíntesis , Hojas de la Planta/fisiología , Suelo , Agua , Clima Desértico , Poaceae , Prosopis , Temperatura
19.
Conserv Physiol ; 2(1): cou006, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27293627

RESUMEN

The success of non-native, invasive species may be due to release from natural enemies, superior competitive abilities, or both. In the Sonoran Desert, Erodium cicutarium has increased in abundance over the last 30 years. While native species in this flora exhibit a strong among-species trade-off between relative growth rate and water-use efficiency, E. cicutarium seems to have a higher relative growth rate for its water-use efficiency value relative to the pattern across native species. This novel trait combination could provide the non-native species with a competitive advantage in this water-limited environment. To test the hypothesis that E. cicutarium is able to achieve high growth rates due to release from native herbivores, we compared the effects of herbivory on E. cicutarium and its native congener, Erodium texanum. We also compared these two species across a range of environmental conditions, both in a common garden and in two distinct seasons in the field, using growth analysis, isotopic compositions and leaf-level gas exchange. Additionally, we compared the competitive abilities of the two Erodium species in a greenhouse experiment. We found no evidence of herbivory to either species. Physiological measurements in a common environment revealed that E. cicutarium was able to achieve high growth rates while simultaneously controlling leaf-level water loss. Non-native E. cicutarium responded to favourable conditions in the field with greater specific leaf area and leaf area ratio than native E. texanum. The non-native Erodium was a stronger competitor than its native congener in a greenhouse competition experiment. The ability to maintain relatively higher values of water-use efficiency:relative growth rate in comparison to the native flora may be what enables E. cictarium to outcompete native species in both wet and dry years, resulting in an increase in abundance in the highly variable Sonoran Desert.

20.
Am J Bot ; 100(7): 1369-80, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23838034

RESUMEN

Global change requires plant ecologists to predict future states of biological diversity to aid the management of natural communities, thus introducing a number of significant challenges. One major challenge is considering how the many interacting features of biological systems, including ecophysiological processes, plant life histories, and species interactions, relate to performance in the face of a changing environment. We have employed a functional trait approach to understand the individual, population, and community dynamics of a model system of Sonoran Desert winter annual plants. We have used a comprehensive approach that connects physiological ecology and comparative biology to population and community dynamics, while emphasizing both ecological and evolutionary processes. This approach has led to a fairly robust understanding of past and contemporary dynamics in response to changes in climate. In this community, there is striking variation in physiological and demographic responses to both precipitation and temperature that is described by a trade-off between water-use efficiency (WUE) and relative growth rate (RGR). This community-wide trade-off predicts both the demographic and life history variation that contribute to species coexistence. Our framework has provided a mechanistic explanation to the recent warming, drying, and climate variability that has driven a surprising shift in these communities: cold-adapted species with more buffered population dynamics have increased in relative abundance. These types of comprehensive approaches that acknowledge the hierarchical nature of biology may be especially useful in aiding prediction. The emerging, novel and nonstationary climate constrains our use of simplistic statistical representations of past plant behavior in predicting the future, without understanding the mechanistic basis of change.


Asunto(s)
Clima Desértico , Ecosistema , Fenómenos Fisiológicos de las Plantas , Plantas/clasificación , Estaciones del Año , Acebutolol , Cambio Climático , Monitoreo del Ambiente , Fotosíntesis , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...