Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Reprod Domest Anim ; 52(4): 561-569, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28295710

RESUMEN

The aim of this study was to assess the effects of different antioxidants on the levels of reactive oxygen species (ROS) and glutathione (GSH) in oocytes during in vitro maturation (IVM), as well as on the production of embryos. Oocyte of slaughterhouse-derived cattle ovaries were placed in IVM with different antioxidants: quercetin (2 µM), cysteamine (100 µM), carnitine (0.5 mg/ml), vitamin C (50 µg/ml) or resveratrol (2 µM). Oocytes matured without any antioxidant supplementation were used as control. The oocytes were assessed for maturation rates and for ROS and GSH levels by fluorescence staining in 2',7'-dichlorodihydrofluorescein diacetate and Cell Tracker Blue, respectively. Embryo production was assessed in terms of cleavage, blastocysts and hatching rates and embryo cell numbers. The results expressed in arbitrary fluorescence units showed ROS reduction (p < .05) in the groups with quercetin (27.5 ± 3.4), vitamin C (27.1 ± 3.0) or resveratrol (28.1 ± 4.7), in comparison with those with cysteamine (34.9 ± 4.5), carnitine (34.6 ± 3.8) or to the control group (36.5 ± 5.2). GSH levels increased (p < .05) in cysteamine (63.5 ± 5.5) or carnitine (60.8 ± 4.4) groups in comparison with quercetin (52.7 ± 5.1), vitamin C (53.0 ± 3.8), resveratrol (53.1 ± 4.4) or to the control (49.6 ± 4.5). Nuclear maturation cleavage and hatched blastocysts rates did not differ (p > .05) between groups. However, blastocyst rates after in vitro fertilization in quercetin (53.5 ± 3.9%), vitamin C (52.1 ± 3.1%) resveratrol (54.2 ± 4.0%), cysteamine (52.4 ± 2.7%) or carnitine (54.2 ± 3.1%) groups were higher (p < .05) than in the control (47.2 ± 2.7%). Total cell numbers in embryos from the vitamin C, resveratrol, cysteamine or carnitine groups were higher than in quercetin and control groups, which were similar to each other. The results suggest that using antioxidants during IVM may reduce oxidative stress either by decreasing ROS levels directly or by increasing GSH levels in oocytes, depending on the type of antioxidant used. Overall, oxidative stress control during IVM with the antioxidants examined here improved blastocyst development with similar efficacy.


Asunto(s)
Antioxidantes/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/efectos de los fármacos , Animales , Blastocisto/efectos de los fármacos , Bovinos , Desarrollo Embrionario , Femenino , Fertilización In Vitro/veterinaria , Glutatión/análisis , Técnicas de Maduración In Vitro de los Oocitos/métodos , Masculino , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA