Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 44(12): 4886-96, 2005 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-15779915

RESUMEN

Recombinant human thymidine kinase 2 (hTK2) expressed in Escherichia coli has been found to bind tightly a substoichiometric amount of deoxyribonucleoside triphosphates (dTTP > dCTP >> dATP), known to be strong feedback inhibitors of the enzyme. Incubation of hTK2 with the substrate dThd was able to release the dNTPs from the active site during purification from E. coli and thus allowed the kinetic characterization of the noninhibited enzyme, with the tetrameric hTK2 showing slightly higher activity than the most abundant dimeric form. The unliganded hTK2 revealed a lower structural stability than the inhibitor-bound enzyme forms, being more prone to aggregation, thermal denaturation, and limited proteolysis. Moreover, intrinsic tryptophan fluorescence (ITF), far-UV circular dichroism (CD), and limited proteolysis have revealed that hTK2 undergoes distinct conformational changes upon binding different substrates and inhibitors, which are known to occur in the nucleoside monophosphate kinase family. The CD-monitored thermal denaturation of hTK2 dimer/tetramer revealed an irreversible process that can be satisfactorily described by the two-state irreversible denaturation model. On the basis of this model, the parameters of the Arrhenius equation were calculated, providing evidence for a significant structural stabilization of the enzyme upon ligand binding (dCyd < MgdCTP < dThd < dCTP < dTTP < MgdTTP), whereas MgATP further destabilizes the enzyme. Finally, surface plasmon resonance (SPR) was used to study in real time the reversible binding of substrates and inhibitors to the immobilized enzyme. The binding affinities for the inhibitors were found to be 1-2 orders of magnitude higher than for the corresponding substrates, both by SPR and ITF analysis.


Asunto(s)
Timidina Quinasa/química , Timidina Quinasa/metabolismo , Dicroismo Circular/métodos , Desoxirribonucleótidos/metabolismo , Dimerización , Inhibidores Enzimáticos/metabolismo , Humanos , Hidrólisis , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Cinética , Ligandos , Conformación Proteica , Desnaturalización Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Resonancia por Plasmón de Superficie/métodos , Timidina Quinasa/aislamiento & purificación , Tripsina/química , Triptófano/química
2.
J Biol Chem ; 279(25): 26571-80, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15060071

RESUMEN

Phenylalanine hydroxylase (PAH) is generally considered to undergo a large and reversible conformational transition upon l-Phe binding, which is closely linked to the substrate-induced catalytic activation of this hysteretic enzyme. Recently, several crystallographically solvent-exposed hinge-bending regions including residues 31-34, 111-117, 218-226, and 425-429 have been defined/predicted to be involved in the intra-protomer propagation of the substrate-triggered molecular motions generated at the active site. On this basis, single-site mutagenesis of key residues in these regions of the human PAH tetramer was performed in the present study, and their functional impact was measured by steady-state kinetics and the global conformational transition as assessed by surface plasmon resonance and intrinsic tryptophan fluorescence spectroscopy. A strong correlation (r(2) = 0.93-0.96) was observed between the l-Phe-induced global conformational transition and V(max) values for wild-type human PAH and the mutant forms K113P, N223D, N426D, and N32D, in contrast to the substitution T427P, which resulted in a tetrameric form with no kinetic cooperativity. Furthermore, the flexible intra-domain linker region (residues 31-34) seems to be involved in a more local conformational change, and the biochemical/biophysical properties of the G33A/G33V mutant forms support a key function of this residue in the positioning of the autoregulatory sequence (residues 1-30) and thus in the regulation of the solvent and substrate access to the active site. The mutant forms revealed a variably reduced global conformational stability compared with wild-type human PAH, as measured by thermal denaturation and limited proteolysis.


Asunto(s)
Fenilalanina Hidroxilasa/química , Sitios de Unión , Dominio Catalítico , Dicroismo Circular , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Humanos , Cinética , Microscopía Fluorescente , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Resonancia por Plasmón de Superficie , Temperatura , Tripsina/química , Triptófano/química
3.
Biochemistry ; 42(51): 15158-69, 2003 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-14690426

RESUMEN

Human thymidine kinase 2 (hTK2) phosphorylates pyrimidine deoxyribonucleosides to the corresponding nucleoside monophosphates, using a nucleotide triphosphate as a phosphate donor. In this study, hTK2 was cloned and expressed at high levels in Escherichia coli as a fusion protein with maltose-binding protein. Induction of a heat-shock response by ethanol and coexpression of plasmid-encoded GroEL/ES chaperonins at 28 degrees C minimized the nonspecific aggregation of the hybrid protein and improved the recovery of three homooligomeric forms of the properly folded enzyme, i.e., dimer > tetramer > hexamer. The dimer and the tetramer were isolated in stable and highly purified forms after proteolytic removal of the fusion partner. Both oligomers contained a substoichiometric amount of deoxyribonucleotide triphosphates (dTTP > dCTP > dATP), known to be strong feedback inhibitors of the enzyme. Steady-state kinetic studies were consistent with the presence of endogenous inhibitors, and both oligomeric forms revealed a lag phase of at least approximately 5 min, which was abolished on preincubation with substrate (dThd or dCyd). The rather similar kinetic properties of the two oligomeric forms indicate that the basic functional unit is a dimer. Molecular docking experiments with a modeled hTK2 three-dimensional structure accurately predicted the binding positions at the active site of the natural substrates (dThd, dCyd, and ATP) and inhibitors (dTTP and dCTP), with highly conserved orientations obtained for all ligands. The calculated relative nonbonded interaction energies are in agreement with the biochemical data and show that the inhibitor complexes have lower stabilization energies (higher affinity) than the substrates.


Asunto(s)
Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxicitosina/química , Escherichia coli/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Timidina Quinasa/química , Timidina Quinasa/aislamiento & purificación , Nucleótidos de Timina/química , Sitios de Unión , Línea Celular Tumoral , Chaperonina 10/biosíntesis , Chaperonina 10/genética , Chaperonina 60/biosíntesis , Chaperonina 60/genética , Clonación Molecular , Medios de Cultivo Condicionados , Nucleótidos de Desoxiadenina/análisis , Nucleótidos de Desoxicitosina/análisis , Dimerización , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Etanol/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Cinética , Modelos Moleculares , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/genética , Solubilidad , Espectrometría de Fluorescencia , Especificidad por Sustrato , Timidina Quinasa/antagonistas & inhibidores , Timidina Quinasa/genética , Nucleótidos de Timina/análisis , Triptófano/química
4.
J Biol Chem ; 278(17): 15142-52, 2003 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-12554741

RESUMEN

Recombinant human phenylalanine hydroxylase (hPAH) expressed in Escherichia coli for 24 h at 28 degrees C has been found by two-dimensional electrophoresis to exist as a mixture of four to five molecular forms as a result of nonenzymatic deamidation of labile Asn residues. The multiple deamidations alter the functional properties of the enzyme including its affinity for l-phenylalanine and tetrahydrobiopterin, catalytic efficiency, and substrate inhibition and also result in enzyme forms more susceptible to limited tryptic proteolysis. Asn(32) in the regulatory domain deamidates very rapidly because of its nearest neighbor amino acid Gly(33) (Solstad, T., Carvalho, R. N., Andersen, O. A., Waidelich, D., and Flatmark, T. (2003) Eur. J. Biochem., in press). Matrix-assisted laser desorption/ionization time of flight-mass spectrometry of the tryptic peptides in the catalytic domain of a 24-h (28 degrees C) expressed enzyme has shown Asn(376) and Asn(133) to be labile residues. Site-directed mutagenesis of nine Asn residues revealed that the deamidations of Asn(32) and Asn(376) are the main determinants for the functional and regulatory differences observed between the 2- and 24-h-induced wild-type (wt) enzyme. The Asn(32) --> Asp, Asn(376) --> Asp, and the double mutant forms expressed for 2 h at 28 degrees C revealed qualitatively similar regulatory properties as the highly deamidated 24-h expressed wt-hPAH. Moreover, deamidation of Asn(32) in the wt-hPAH (24 h expression at 28 degrees C) and the Asn(32) --> Asp mutation both increase the initial rate of phosphorylation of Ser(16) by cAMP-dependent protein kinase (p < 0.005). By contrast, the substitution of Gly(33) with Ala or Val, both preventing the deamidation of Asn(32), resulted in enzyme forms that were phosphorylated at a similar rate as nondeamidated wt-hPAH, even on 24-h expression. The other Asn --> Asp substitutions (in the catalytic domain) revealed that Asn(207) and Asn(223) have an important stabilizing structural function. Finally, two recently reported phenylketonuria mutations at Asn residues in the catalytic domain were studied, i.e. Asn(167) --> Ile and Asn(207) --> Asp, and their phenotypes were characterized.


Asunto(s)
Asparagina/metabolismo , Estabilidad de Enzimas , Fenilalanina Hidroxilasa/metabolismo , Amidas/metabolismo , Secuencia de Aminoácidos , Asparagina/genética , Ácido Aspártico , Dominio Catalítico , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Mutación Missense , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...