Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virus Evol ; 9(1): vead004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814938

RESUMEN

H7N9 avian influenza viruses (AIVs) have caused over 1,500 documented human infections since emerging in 2013. Although wild-type H7N9 AIVs can be transmitted by respiratory droplets in ferrets, they have not yet caused widespread outbreaks in humans. Previous studies have revealed molecular determinants of H7N9 AIV host switching, but little is known about potential evolutionary constraints on this process. Here, we compare patterns of sequence evolution for H7N9 AIV and mammalian H1N1 viruses during replication and transmission in ferrets. We show that three main factors-purifying selection, stochasticity, and very narrow transmission bottlenecks-combine to severely constrain the ability of H7N9 AIV to effectively adapt to mammalian hosts in isolated, acute spillover events. We find rare evidence of natural selection favoring new, potentially mammal-adapting mutations within ferrets but no evidence of natural selection acting during transmission. We conclude that human-adapted H7N9 viruses are unlikely to emerge during typical spillover infections. Our findings are instead consistent with a model in which the emergence of a human-transmissible virus would be a rare and unpredictable, though highly consequential, 'jackpot' event. Strategies to control the total number of spillover infections will limit opportunities for the virus to win this evolutionary lottery.

2.
Nat Commun ; 13(1): 3416, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701424

RESUMEN

Transmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The bottlenecks within hosts and their potential impacts on evolutionary pathways taken during infection are poorly understood. To address this, we created highly diverse IAV libraries bearing molecular barcodes on two gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts. Here we show that IAV infection in lungs is characterized by multiple within-host bottlenecks that result in "islands" of infection in lung lobes, each with genetically distinct populations. We perform site-specific inoculation of barcoded IAV in the upper respiratory tract of ferrets and track viral diversity as infection spreads to the trachea and lungs. We detect extensive compartmentalization of discrete populations within lung lobes. Bottleneck events and localized replication stochastically sample individual viruses from the upper respiratory tract or the trachea that become the dominant genotype in a particular lobe. These populations are shaped strongly by founder effects, with limited evidence for positive selection. The segregated sites of replication highlight the jackpot-style events that contribute to within-host influenza virus evolution and may account for low rates of intrahost adaptation.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Hurones , Genotipo , Humanos , Virus de la Influenza A/genética , Replicación Viral/genética
3.
PLoS Pathog ; 15(8): e1007766, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31369649

RESUMEN

Zika virus (ZIKV) and dengue virus (DENV) are genetically and antigenically related flaviviruses that now co-circulate in much of the tropical and subtropical world. The rapid emergence of ZIKV in the Americas in 2015 and 2016, and its recent associations with Guillain-Barré syndrome, birth defects, and fetal loss have led to the hypothesis that DENV infection induces cross-reactive antibodies that influence the severity of secondary ZIKV infections. It has also been proposed that pre-existing ZIKV immunity could affect DENV pathogenesis. We examined outcomes of secondary ZIKV infections in three rhesus and fifteen cynomolgus macaques, as well as secondary DENV-2 infections in three additional rhesus macaques up to a year post-primary ZIKV infection. Although cross-binding antibodies were detected prior to secondary infection for all animals and cross-neutralizing antibodies were detected for some animals, previous DENV or ZIKV infection had no apparent effect on the clinical course of heterotypic secondary infections in these animals. All animals had asymptomatic infections and, when compared to controls, did not have significantly perturbed hematological parameters. Rhesus macaques infected with DENV-2 approximately one year after primary ZIKV infection had higher vRNA loads in plasma when compared with serum vRNA loads from ZIKV-naive animals infected with DENV-2, but a differential effect of sample type could not be ruled out. In cynomolgus macaques, the serotype of primary DENV infection did not affect the outcome of secondary ZIKV infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Coinfección/virología , Virus del Dengue/inmunología , Dengue/virología , Infección por el Virus Zika/virología , Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Coinfección/sangre , Coinfección/complicaciones , Reacciones Cruzadas , Dengue/sangre , Dengue/complicaciones , Femenino , Macaca mulatta , Masculino , Infección por el Virus Zika/sangre , Infección por el Virus Zika/complicaciones
4.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31092584

RESUMEN

We evaluated the contribution of CD8αß+ T cells to control of live-attenuated simian immunodeficiency virus (LASIV) replication during chronic infection and subsequent protection from pathogenic SIV challenge. Unlike previous reports with a CD8α-specific depleting monoclonal antibody (mAb), the CD8ß-specific mAb CD8ß255R1 selectively depleted CD8αß+ T cells without also depleting non-CD8+ T cell populations that express CD8α, such as natural killer (NK) cells and γδ T cells. Following infusion with CD8ß255R1, plasma viremia transiently increased coincident with declining peripheral CD8αß+ T cells. Interestingly, plasma viremia returned to predepletion levels even when peripheral CD8αß+ T cells did not. Although depletion of CD8αß+ T cells in the lymph node (LN) was incomplete, frequencies of these cells were 3-fold lower (P = 0.006) in animals that received CD8ß255R1 than in those that received control IgG. It is possible that these residual SIV-specific CD8αß+ T cells may have contributed to suppression of viremia during chronic infection. We also determined whether infusion of CD8ß255R1 in the LASIV-vaccinated animals increased their susceptibility to infection following intravenous challenge with pathogenic SIVmac239. We found that 7/8 animals infused with CD8ß255R1, and 3/4 animals infused with the control IgG, were resistant to SIVmac239 infection. These results suggest that infusion with CD8ß255R1 did not eliminate the protection afforded to LASIV vaccination. This provides a comprehensive description of the impact of CD8ß255R1 infusion on the immunological composition in cynomolgus macaques, compared to an isotype-matched control IgG, while showing that the control of LASIV viremia and protection from challenge can occur even after CD8ß255R1 administration.IMPORTANCE Studies of SIV-infected macaques that deplete CD8+ T cells in vivo with monoclonal antibodies have provided compelling evidence for their direct antiviral role. These studies utilized CD8α-specific mAbs that target both the major (CD8αß+) and minor (CD8αα+) populations of CD8+ T cells but additionally deplete non-CD8+ T cell populations that express CD8α, such as NK cells and γδ T cells. In the current study, we administered the CD8ß-specific depleting mAb CD8ß255R1 to cynomolgus macaques chronically infected with a LASIV to selectively deplete CD8αß+ T cells without removing CD8αα+ lymphocytes. We evaluated the impact on control of virus replication and protection from pathogenic SIVmac239 challenge. These results underscore the utility of CD8ß255R1 for studying the direct contribution of CD8αß+ T cells in various disease states.


Asunto(s)
Antígenos CD8/análisis , Linfocitos T CD8-positivos/inmunología , Depleción Linfocítica , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Subgrupos de Linfocitos T/inmunología , Replicación Viral , Animales , Macaca , Plasma/virología , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Carga Viral
5.
Infect Immun ; 86(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30224552

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death among human immunodeficiency virus (HIV)-positive patients. The precise mechanisms by which HIV impairs host resistance to a subsequent M. tuberculosis infection are unknown. We modeled this coinfection in Mauritian cynomolgus macaques (MCM) using simian immunodeficiency virus (SIV) as an HIV surrogate. We infected seven MCM with SIVmac239 intrarectally and 6 months later coinfected them via bronchoscope with ∼10 CFU of M. tuberculosis Another eight MCM were infected with M. tuberculosis alone. TB progression was monitored by clinical parameters, by culturing bacilli in gastric and bronchoalveolar lavages, and by serial [18F]fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. The eight MCM infected with M. tuberculosis alone displayed dichotomous susceptibility to TB, with four animals reaching humane endpoint within 13 weeks and four animals surviving >19 weeks after M. tuberculosis infection. In stark contrast, all seven SIV+ animals exhibited rapidly progressive TB following coinfection and all reached humane endpoint by 13 weeks. Serial PET/CT imaging confirmed dichotomous outcomes in MCM infected with M. tuberculosis alone and marked susceptibility to TB in all SIV+ MCM. Notably, imaging revealed a significant increase in TB granulomas between 4 and 8 weeks after M. tuberculosis infection in SIV+ but not in SIV-naive MCM and implies that SIV impairs the ability of animals to contain M. tuberculosis dissemination. At necropsy, animals with preexisting SIV infection had more overall pathology, increased bacterial loads, and a trend towards more extrapulmonary disease than animals infected with M. tuberculosis alone. We thus developed a tractable MCM model in which to study SIV-M. tuberculosis coinfection and demonstrate that preexisting SIV dramatically diminishes the ability to control M. tuberculosis coinfection.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología , Tuberculosis/inmunología , Tuberculosis/virología , Animales , Carga Bacteriana , Linfocitos T CD4-Positivos/inmunología , Coinfección/microbiología , Coinfección/virología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Granuloma/inmunología , Granuloma/microbiología , Macaca fascicularis , Mycobacterium tuberculosis , Tomografía Computarizada por Tomografía de Emisión de Positrones , Virus de la Inmunodeficiencia de los Simios , Tuberculosis/veterinaria
6.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30111562

RESUMEN

We manipulated SIVmac239Δnef, a model of major histocompatibility complex (MHC)-independent viral control, to evaluate characteristics of effective cellular responses mounted by Mauritian cynomolgus macaques (MCMs) that express the M3 MHC haplotype, which has been associated with poor control of pathogenic simian immunodeficiency virus (SIV). We created SIVΔnef-8x to test the hypothesis that effective SIV-specific T cell responses targeting invariant viral regions can emerge in the absence of immunodominant CD8+ T cell responses targeting variable epitopes and that control is achievable in individuals lacking known "protective" MHC alleles. Full-proteome gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assays identified six newly targeted immunogenic regions following SIVΔnef-8x infection of M3/M3 MCMs. We deep sequenced circulating virus and found that four of the six newly targeted regions rarely accumulated mutations. Six animals infected with SIVΔnef-8x had T cell responses that targeted at least one of the four invariant regions and had a lower set point viral load than two animals that did not have T cell responses that targeted any invariant regions. We found that MHC class II molecules restricted all four of the invariant peptide regions, while the two variable regions were restricted by MHC class I molecules. Therefore, in the absence of immunodominant CD8+ T cell responses that target variable regions during SIVmac239Δnef infection, individuals without protective MHC alleles developed predominantly CD4+ T cell responses specific for invariant regions that may improve control of virus replication. Our results provide some evidence that antiviral CD4+ T cells during acute SIV infection can contribute to effective viral control and should be considered in strategies to combat HIV infection.IMPORTANCE Studies defining effective cellular immune responses to human immunodeficiency virus (HIV) and SIV have largely focused on a rare population that express specific MHC class I alleles and control virus replication in the absence of antiretroviral treatment. This leaves in question whether similar effective immune responses can be achieved in the larger population. The majority of HIV-infected individuals mount CD8+ T cell responses that target variable viral regions that accumulate high-frequency escape mutations. Limiting T cell responses to these variable regions and targeting invariant viral regions, similar to observations in rare "elite controllers," may provide an ideal strategy for the development of effective T cell responses in individuals with diverse MHC genetics. Therefore, it is of paramount importance to determine whether T cell responses can be redirected toward invariant viral regions in individuals without protective MHC alleles and if these responses improve control of virus replication.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Secuencia de Bases , Células Cultivadas , Ensayo de Immunospot Ligado a Enzimas , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Interferón gamma/inmunología , Macaca fascicularis , Masculino , ARN Viral/genética , Virus de la Inmunodeficiencia de los Simios/genética , Carga Viral/inmunología , Replicación Viral
7.
PLoS Pathog ; 14(3): e1006964, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29590202

RESUMEN

Defining the complex dynamics of Zika virus (ZIKV) infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a "synthetic swarm" whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics.


Asunto(s)
Evolución Biológica , Biblioteca de Genes , Transmisión Vertical de Enfermedad Infecciosa , Macaca mulatta/genética , Mosquitos Vectores , Infección por el Virus Zika/complicaciones , Virus Zika/clasificación , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Macaca mulatta/virología , Masculino , Viremia , Virus Zika/genética , Virus Zika/patogenicidad , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
8.
PLoS One ; 13(1): e0190617, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29381706

RESUMEN

Congenital Zika virus (ZIKV) infection impacts fetal development and pregnancy outcomes. We infected a pregnant rhesus macaque with a Puerto Rican ZIKV isolate in the first trimester. The pregnancy was complicated by preterm premature rupture of membranes (PPROM), intraamniotic bacterial infection and fetal demise 49 days post infection (gestational day 95). Significant pathology at the maternal-fetal interface included acute chorioamnionitis, placental infarcts, and leukocytoclastic vasculitis of the myometrial radial arteries. ZIKV RNA was disseminated throughout fetal tissues and maternal immune system tissues at necropsy, as assessed by quantitative RT-PCR for viral RNA. Replicating ZIKV was identified in fetal tissues, maternal uterus, and maternal spleen by fluorescent in situ hybridization for viral replication intermediates. Fetal ocular pathology included a choroidal coloboma, suspected anterior segment dysgenesis, and a dysplastic retina. This is the first report of ocular pathology and prolonged viral replication in both maternal and fetal tissues following congenital ZIKV infection in a rhesus macaque. PPROM followed by fetal demise and severe pathology of the visual system have not been described in macaque congenital ZIKV infection previously. While this case of ZIKV infection during pregnancy was complicated by bacterial infection with PPROM, the role of ZIKV on this outcome cannot be precisely defined, and further nonhuman primate studies will determine if increased risk for PPROM or other adverse pregnancy outcomes are associated with congenital ZIKV infection.


Asunto(s)
Modelos Animales de Enfermedad , Ojo/patología , Placenta/patología , Útero/patología , Infección por el Virus Zika/congénito , Animales , Femenino , Hibridación Fluorescente in Situ , Macaca mulatta , Embarazo , ARN Viral/genética , Replicación Viral , Virus Zika/genética , Virus Zika/fisiología
9.
J Virol ; 92(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118125

RESUMEN

Developing biological interventions to control human immunodeficiency virus (HIV) replication in the absence of antiretroviral therapy (ART) could contribute to the development of a functional cure. As a potential alternative to ART, the interleukin-15 (IL-15) superagonist ALT-803 has been shown to boost the number and function of HIV-specific CD8+ T and NK cell populations in vitro Four simian immunodeficiency virus (SIV)-positive rhesus macaques, three of whom possessed major histocompatibility complex alleles associated with control of SIV and all of whom had received SIV vaccine vectors that had the potential to elicit CD8+ T cell responses, were given ALT-803 in three treatment cycles. The first and second cycles of treatment were separated by 2 weeks, while the third cycle was administered after a 29-week break. ALT-803 transiently elevated the total CD8+ effector and central memory T cell and NK cell populations in peripheral blood, while viral loads transiently decreased by ∼2 logs in all animals. Virus suppression was not sustained as T cells became less responsive to ALT-803 and waned in numbers. No effect on viral loads was observed in the second cycle of ALT-803, concurrent with downregulation of the IL-2/15 common γC and ß chain receptors on both CD8+ T cells and NK cells. Furthermore, populations of immunosuppressive T cells increased during the second cycle of ALT-803 treatment. During the third treatment cycle, responsiveness to ALT-803 was restored. CD8+ T cells and NK cells increased again 3- to 5-fold, and viral loads transiently decreased again by 1 to 2 logs.IMPORTANCE Overall, our data show that ALT-803 has the potential to be used as an immunomodulatory agent to elicit effective immune control of HIV/SIV replication. We identify mechanisms to explain why virus control is transient, so that this model can be used to define a clinically appropriate treatment regimen.


Asunto(s)
Proteínas/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular , Modelos Animales de Enfermedad , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Macaca mulatta , Proteínas Recombinantes de Fusión , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral
10.
Nat Commun ; 8(1): 2096, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29235456

RESUMEN

Mouse and nonhuman primate models now serve as useful platforms to study Zika virus (ZIKV) pathogenesis, candidate therapies, and vaccines, but they rely on needle inoculation of virus: the effects of mosquito-borne infection on disease outcome have not been explored in these models. Here we show that infection via mosquito bite delays ZIKV replication to peak viral loads in rhesus macaques. Importantly, in mosquito-infected animals ZIKV tissue distribution was limited to hemolymphatic tissues, female reproductive tract tissues, kidney, and liver, potentially emulating key features of human ZIKV infections, most of which are characterized by mild or asymptomatic disease. Furthermore, deep sequencing analysis reveals that ZIKV populations in mosquito-infected monkeys show greater sequence heterogeneity and lower overall diversity than in needle-inoculated animals. This newly developed system will be valuable for studying ZIKV disease because it more closely mimics human infection by mosquito bite than needle-based inoculations.


Asunto(s)
Aedes/virología , Tropismo Viral/fisiología , Replicación Viral , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Chlorocebus aethiops , Femenino , Humanos , Cinética , Macaca mulatta , Masculino , Mosquitos Vectores/virología , Enfermedades de los Primates/virología , Células Vero , Carga Viral
11.
Nat Commun ; 8(1): 169, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765581

RESUMEN

Zika virus is present in urine, saliva, tears, and breast milk, but the transmission risk associated with these body fluids is currently unknown. Here we evaluate the risk of Zika virus transmission through mucosal contact in rhesus macaques. Application of high-dose Zika virus directly to the tonsils of three rhesus macaques results in detectable plasma viremia in all animals by 2 days post-exposure; virus replication kinetics are similar to those observed in animals infected subcutaneously. Three additional macaques inoculated subcutaneously with Zika virus served as saliva donors to assess the transmission risk from contact with oral secretions from an infected individual. Seven naive animals repeatedly exposed to donor saliva via the conjunctivae, tonsils, or nostrils did not become infected. Our results suggest that there is a risk of Zika virus transmission via the mucosal route, but that the risk posed by oral secretions from individuals with a typical course of Zika virus infection is low.Zika virus (ZIKV) is present in body fluids, including saliva, but transmission risk through mucosal contact is not well known. Here, the authors show that oropharyngeal mucosal infection of macaques with a high ZIKV dose results in viremia, but that transmission risk from saliva of infected animals is low.


Asunto(s)
Membrana Mucosa/virología , Orofaringe/virología , Saliva/virología , Viremia/transmisión , Infección por el Virus Zika/transmisión , Virus Zika , Animales , Macaca mulatta , Replicación Viral
12.
PLoS Pathog ; 13(5): e1006378, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28542585

RESUMEN

Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10-12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated.


Asunto(s)
Transmisión Vertical de Enfermedad Infecciosa , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Líquido Amniótico/virología , Animales , Decidua/patología , Decidua/virología , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal , Feto , Humanos , Pulmón/patología , Pulmón/virología , Macaca mulatta , Placenta/patología , Placenta/virología , Embarazo , ARN Viral/análisis , Bazo/patología , Bazo/virología , Cordón Umbilical/patología , Cordón Umbilical/virología , Viremia , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
13.
mSphere ; 2(2)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28289727

RESUMEN

Zika virus (ZIKV) has recently spread through the Americas and has been associated with a range of health effects, including birth defects in children born to women infected during pregnancy. Although the natural reservoir of ZIKV remains poorly defined, the virus was first identified in a captive "sentinel" macaque monkey in Africa in 1947. However, the virus has not been reported in humans or nonhuman primates (NHPs) in Africa outside Gabon in over a decade. Here, we examine ZIKV infection in 239 wild baboons and African green monkeys from South Africa, the Gambia, Tanzania, and Zambia using combinations of unbiased deep sequencing, quantitative reverse transcription-PCR (qRT-PCR), and an antibody capture assay that we optimized using serum collected from captive macaque monkeys exposed to ZIKV, dengue virus, and yellow fever virus. While we did not find evidence of active ZIKV infection in wild NHPs in Africa, we found variable ZIKV seropositivity of up to 16% in some of the NHP populations sampled. We anticipate that these results and the methodology described within will help in continued efforts to determine the prevalence, natural reservoir, and transmission dynamics of ZIKV in Africa and elsewhere. IMPORTANCE Zika virus (ZIKV) is a mosquito-borne virus originally discovered in a captive monkey living in the Zika Forest of Uganda, Africa, in 1947. Recently, an outbreak in South America has shown that ZIKV infection can cause myriad health effects, including birth defects in the children of women infected during pregnancy. Here, we sought to investigate ZIKV infection in wild African primates to better understand its emergence and spread, looking for evidence of active or prior infection. Our results suggest that up to 16% of some populations of nonhuman primate were, at some point, exposed to ZIKV. We anticipate that this study will be useful for future studies that examine the spread of infections from wild animals to humans in general and those studying ZIKV in primates in particular.

14.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27974564

RESUMEN

Simian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species. IMPORTANCE: Certain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution both in vitro and in vivo.


Asunto(s)
Infecciones por Arterivirus/veterinaria , Arterivirus/fisiología , Evolución Biológica , Interacciones Huésped-Patógeno , Enfermedades de los Monos/virología , Animales , Interacciones Huésped-Patógeno/genética , Macaca fascicularis , Enfermedades de los Monos/genética , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , ARN Viral , Selección Genética , Internalización del Virus , Replicación Viral
15.
PLoS Negl Trop Dis ; 10(12): e0005168, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27911897

RESUMEN

BACKGROUND: Zika virus (ZIKV; Flaviviridae, Flavivirus) was declared a public health emergency of international concern by the World Health Organization (WHO) in February 2016, because of the evidence linking infection with ZIKV to neurological complications, such as Guillain-Barre Syndrome in adults and congenital birth defects including microcephaly in the developing fetus. Because development of a ZIKV vaccine is a top research priority and because the genetic and antigenic variability of many RNA viruses limits the effectiveness of vaccines, assessing whether immunity elicited against one ZIKV strain is sufficient to confer broad protection against all ZIKV strains is critical. Recently, in vitro studies demonstrated that ZIKV likely circulates as a single serotype. Here, we demonstrate that immunity elicited by African lineage ZIKV protects rhesus macaques against subsequent infection with Asian lineage ZIKV. METHODOLOGY/PRINCIPAL FINDINGS: Using our recently developed rhesus macaque model of ZIKV infection, we report that the prototypical ZIKV strain MR766 productively infects macaques, and that immunity elicited by MR766 protects macaques against heterologous Asian ZIKV. Furthermore, using next generation deep sequencing, we found in vivo restoration of a putative N-linked glycosylation site upon replication in macaques that is absent in numerous MR766 strains that are widely being used by the research community. This reversion highlights the importance of carefully examining the sequence composition of all viral stocks as well as understanding how passage history may alter a virus from its original form. CONCLUSIONS/SIGNIFICANCE: An effective ZIKV vaccine is needed to prevent infection-associated fetal abnormalities. Macaques whose immune responses were primed by infection with East African ZIKV were completely protected from detectable viremia when subsequently rechallenged with heterologous Asian ZIKV. Therefore, these data suggest that immunogen selection is unlikely to adversely affect the breadth of vaccine protection, i.e., any Asian ZIKV immunogen that protects against homologous challenge will likely confer protection against all other Asian ZIKV strains.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Secuencia de Aminoácidos , Animales , Protección Cruzada , Modelos Animales de Enfermedad , Femenino , Humanos , Macaca mulatta , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología , Virus Zika/química , Virus Zika/genética , Infección por el Virus Zika/virología
16.
J Clin Pharmacol ; 52(6): 828-36, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22232733

RESUMEN

Imiquimod 3.75% cream is a new formulation intended for daily self-application. The objective of this study was to characterize serum imiquimod pharmacokinetics under maximal use conditions. Adults with ≥8 warts or total wart area ≥100 mm² applied up to 1 packet of imiquimod 3.75% cream (250 mg cream, 9.375 mg imiquimod) once daily for 3 weeks. Blood was obtained prior to doses 1, 7, 14, and 21 and at selected time points after doses 1 and 21. Eighteen patients (13 men and 5 women) with a median wart count of 16 and total wart area of 60 mm² were enrolled. Day 21 mean (SD) serum C(max) was 0.49 (0.37) ng/mL, AUC0₋24 6.80 (3.59) ng·h/mL, and t(1/2) 24.1 (12.4) hours. Steady state was achieved by day 7 with ~2-fold increase in C(max) and AUC after multiple dosing. Overall, C(max) was higher and t(max) shorter in women, with comparable AUC0₋24. Imiquimod metabolites were sporadically quantifiable. No patients discontinued for adverse events; 1 interrupted dosing for an application site ulcer. Treatment-related adverse events occurred in 16.7% of the patients. In conclusion, serum imiquimod concentrations were low after daily self-application to external anogenital warts of up to 1 packet of imiquimod 3.75% cream for 21 days.


Asunto(s)
Aminoquinolinas/farmacocinética , Enfermedades del Ano/tratamiento farmacológico , Condiloma Acuminado/tratamiento farmacológico , Factores Inmunológicos/farmacocinética , Receptor Toll-Like 7/antagonistas & inhibidores , Verrugas/tratamiento farmacológico , Adulto , Aminoquinolinas/administración & dosificación , Aminoquinolinas/efectos adversos , Aminoquinolinas/uso terapéutico , Enfermedades del Ano/sangre , Enfermedades del Ano/inmunología , Enfermedades del Ano/fisiopatología , Biotransformación , Condiloma Acuminado/sangre , Condiloma Acuminado/inmunología , Condiloma Acuminado/fisiopatología , Erupciones por Medicamentos/epidemiología , Erupciones por Medicamentos/fisiopatología , Femenino , Ingle , Semivida , Humanos , Imiquimod , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Incidencia , Masculino , Pomadas , Perineo , Autoadministración , Índice de Severidad de la Enfermedad , Verrugas/sangre , Verrugas/inmunología , Verrugas/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...