Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(12): e0099323, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37962355

RESUMEN

IMPORTANCE: Inactivation of EP300/CREBB paralogous cellular lysine acetyltransferases (KATs) during the early phase of infection is a consistent feature of DNA viruses. The cell responds by stabilizing transcription factor IRF3 which activates transcription of scores of interferon-stimulated genes (ISGs), inhibiting viral replication. Human respiratory adenoviruses counter this by assembling a CUL4-based ubiquitin ligase complex that polyubiquitinylates RUVBL1 and 2 inducing their proteasomal degradation. This inhibits accumulation of active IRF3 and the expression of anti-viral ISGs, allowing replication of the respiratory HAdVs in the face of inhibition of EP300/CBEBBP KAT activity by the N-terminal region of E1A.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas E1A de Adenovirus , Proteínas Portadoras , ADN Helicasas , Inmunidad Innata , Complejo de la Endopetidasa Proteasomal , Estrés Fisiológico , Humanos , Proteínas E1A de Adenovirus/metabolismo , Adenovirus Humanos/enzimología , Adenovirus Humanos/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , ADN Helicasas/metabolismo , Interferones/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Cuaternaria de Proteína , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación , Replicación Viral
2.
Anal Chem ; 95(41): 15180-15188, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37811788

RESUMEN

Tandem mass tags (TMT) and tribrid mass spectrometers are a powerful combination for high-throughput proteomics with high quantitative accuracy. Increasingly, this technology is being used to map the effects of drugs on the proteome. However, the depth of proteomic profiling is still limited by sensitivity and speed. The new Orbitrap Ascend mass spectrometer was designed to address these limitations with a combination of hardware and software improvements. We evaluated the performance of the Ascend in multiple contexts including deep proteomic profiling. We found that the Ascend exhibited increased sensitivity, yielding higher signal-to-noise ratios than the Orbitrap Eclipse with shorter injection times. As a result, higher numbers of peptides and proteins were identified and quantified, especially with low sample input. TMT measurements had significantly improved signal-to-noise ratios, improving quantitative precision. In a fractionated 16plex sample that profiled proteomic differences across four human cell lines, the Ascend was able to quantify hundreds more proteins than the Eclipse, many of them low-abundant proteins, and the Ascend was able to quantify >8000 proteins in 30% less instrument time. We used the Ascend to analyze 8881 proteins in HCT116 cancer cells treated with covalent sulfolane/sulfolene inhibitors of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a phosphorylation-specific peptidyl-prolyl cis-trans isomerase implicated in several cancers. We characterized these PIN1 inhibitors' effects on the proteome and identified discrepancies among the different compounds, which will facilitate a better understanding of the structure-activity relationship of this class of compounds. The Ascend was able to quantify statistically significant, potentially therapeutically relevant changes in proteins that the Eclipse could not detect.


Asunto(s)
Proteoma , Proteómica , Humanos , Proteoma/metabolismo , Espectrometría de Masas , Células HCT116 , cis-trans-Isomerasas , Peptidilprolil Isomerasa de Interacción con NIMA
3.
Anal Chem ; 95(32): 11854-11858, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37527417

RESUMEN

Data-independent acquisition (DIA) mass spectrometry has grown in popularity in recent years, because of the reproducibility and quantitative rigor of a systematic tandem mass spectrometry (MS/MS) sampling method. However, traditional DIA methods may spend valuable instrument time acquiring MS/MS spectra with no usable information in them, affecting sensitivity and quantitative performance. We developed a DIA strategy that dynamically adjusts the MS/MS windows during the chromatographic separation. The method focuses MS/MS acquisition on the most relevant mass range at each point in time─increasing the quantitative sensitivity by increasing the time spent on each DIA window. We demonstrate an improved lower limit of quantification, on average, without sacrificing the number of peptides detected.


Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Péptidos/análisis
4.
J Proteome Res ; 22(9): 2836-2846, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557900

RESUMEN

Sample multiplexed quantitative proteomics assays have proved to be a highly versatile means to assay molecular phenotypes. Yet, stochastic precursor selection and precursor coisolation can dramatically reduce the efficiency of data acquisition and quantitative accuracy. To address this, intelligent data acquisition (IDA) strategies have recently been developed to improve instrument efficiency and quantitative accuracy for both discovery and targeted methods. Toward this end, we sought to develop and implement a new real-time spectral library searching (RTLS) workflow that could enable intelligent scan triggering and peak selection within milliseconds of scan acquisition. To ensure ease of use and general applicability, we built an application to read in diverse spectral libraries and file types from both empirical and predicted spectral libraries. We demonstrate that RTLS methods enable improved quantitation of multiplexed samples, particularly with consideration for quantitation from chimeric fragment spectra. We used RTLS to profile proteome responses to small molecule perturbations and were able to quantify up to 15% more significantly regulated proteins in half the gradient time compared to traditional methods. Taken together, the development of RTLS expands the IDA toolbox to improve instrument efficiency and quantitative accuracy for sample multiplexed analyses.


Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Péptidos/análisis , Proteoma/análisis , Biblioteca de Genes , Flujo de Trabajo , Biblioteca de Péptidos
5.
Anal Chem ; 95(20): 7813-7821, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37172325

RESUMEN

In mass spectrometry-based lipidomics, complex lipid mixtures undergo chromatographic separation, are ionized, and are detected using tandem MS (MSn) to simultaneously quantify and structurally characterize eluting species. The reported structural granularity of these identified lipids is strongly reliant on the analytical techniques leveraged in a study. For example, lipid identifications from traditional collisionally activated data-dependent acquisition experiments are often reported at either species level or molecular species level. Structural resolution of reported lipid identifications is routinely enhanced by integrating both positive and negative mode analyses, requiring two separate runs or polarity switching during a single analysis. MS3+ can further elucidate lipid structure, but the lengthened MS duty cycle can negatively impact analysis depth. Recently, functionality has been introduced on several Orbitrap Tribrid mass spectrometry platforms to identify eluting molecular species on-the-fly. These real-time identifications can be leveraged to trigger downstream MSn to improve structural characterization with lessened impacts on analysis depth. Here, we describe a novel lipidomics real-time library search (RTLS) approach, which utilizes the lipid class of real-time identifications to trigger class-targeted MSn and to improve the structural characterization of phosphotidylcholines, phosphotidylethanolamines, phosphotidylinositols, phosphotidylglycerols, phosphotidylserine, and sphingomyelins in the positive ion mode. Our class-based RTLS method demonstrates improved selectivity compared to the current methodology of triggering MSn in the presence of characteristic ions or neutral losses.


Asunto(s)
Glicerofosfolípidos , Esfingomielinas , Glicerofosfolípidos/análisis , Esfingomielinas/análisis , Espectrometría de Masas en Tándem/métodos , Iones , Biblioteca de Genes
6.
J Biol Chem ; 298(7): 102094, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654137

RESUMEN

The cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway delivers Fe-S clusters to nuclear and cytosolic Fe-S proteins involved in essential cellular functions. Although the delivery process is regulated by the availability of iron and oxygen, it remains unclear how CIA components orchestrate the cluster transfer under varying cellular environments. Here, we utilized a targeted proteomics assay for monitoring CIA factors and substrates to characterize the CIA machinery. We find that nucleotide-binding protein 1 (NUBP1/NBP35), cytosolic iron-sulfur assembly component 3 (CIAO3/NARFL), and CIA substrates associate with nucleotide-binding protein 2 (NUBP2/CFD1), a component of the CIA scaffold complex. NUBP2 also weakly associates with the CIA targeting complex (MMS19, CIAO1, and CIAO2B) indicating the possible existence of a higher order complex. Interactions between CIAO3 and the CIA scaffold complex are strengthened upon iron supplementation or low oxygen tension, while iron chelation and reactive oxygen species weaken CIAO3 interactions with CIA components. We further demonstrate that CIAO3 mutants defective in Fe-S cluster binding fail to integrate into the higher order complexes. However, these mutants exhibit stronger associations with CIA substrates under conditions in which the association with the CIA targeting complex is reduced suggesting that CIAO3 and CIA substrates may associate in complexes independently of the CIA targeting complex. Together, our data suggest that CIA components potentially form a metabolon whose assembly is regulated by environmental cues and requires Fe-S cluster incorporation in CIAO3. These findings provide additional evidence that the CIA pathway adapts to changes in cellular environment through complex reorganization.


Asunto(s)
Proteínas Hierro-Azufre , Hierro , Citosol/metabolismo , Proteínas de Unión al GTP/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Azufre/metabolismo
7.
Anal Chem ; 94(9): 3749-3755, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35188738

RESUMEN

Structural characterization of novel metabolites in drug discovery or metabolomics is one of the most challenging tasks. Multilevel fragmentation (MSn) based approaches combined with various dissociation modes are frequently utilized for facilitating structure assignment of unknown compounds. As each of the MS precursors undergoes MSn, the instrument cycle time can limit the total number of precursors analyzed in a single LC run for complex samples. This necessitates splitting data acquisition into several analyses to target lower concentration analytes in successive experiments. Here we present a new LC/MS data acquisition strategy, termed Met-IQ, where the decision to perform an MSn acquisition is automatically made in real time based on the similarity between the experimental MS2 spectrum and a spectrum in a reference spectral library for the known compounds of interest. If similarity to a spectrum in the library is found, the instrument performs a decision-dependent event, such as an MS3 spectrum. Compared to an intensity-based, data-dependent MSn experiment, only a limited number of MS3 are triggered using Met-IQ, increasing the overall MS2 instrument sampling rate. We applied this strategy to an Amprenavir sample incubated with human liver microsomes. The number of MS2 spectra increased 2-fold compared to a data dependent experiment where MS3 was triggered for each precursor, resulting in identification of 14-34% more unique potential metabolites. Furthermore, the MS2 fragments were selected to focus likely sources of useful structural information, specifically higher mass fragments to maximize acquisition of MS3 data relevant for structure assignment. The described Met-IQ strategy is not limited to metabolism experiments and can be applied to analytical samples where the detection of unknown compounds structurally related to a known compound(s) is sought.


Asunto(s)
Metabolómica , Cromatografía Liquida/métodos , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos
8.
Mol Cell ; 82(6): 1123-1139.e8, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35182481

RESUMEN

A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/ß, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.


Asunto(s)
Proteínas F-Box , Proteína 7 que Contiene Repeticiones F-Box-WD , Neoplasias , Animales , Línea Celular Tumoral , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas de Homeodominio/genética , Humanos , Evasión Inmune , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Tirosina Fosfatasas/genética , Ubiquitina/metabolismo
9.
Nat Commun ; 11(1): 2798, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493925

RESUMEN

Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Genes Supresores , Sitios Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Luz , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
10.
J Proteome Res ; 18(10): 3586-3596, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31498634

RESUMEN

The enrichment of biotinylated proteins using immobilized streptavidin has become a staple methodology for affinity purification-based proteomics. Many of these workflows rely upon tryptic digestion to elute streptavidin-captured moieties from the beads. The concurrent release of high amounts of streptavidin-derived peptides into the digested sample, however, can significantly hamper the effectiveness of downstream proteomic analyses by increasing the complexity and dynamic range of the mixture. Here, we describe a strategy for the chemical derivatization of streptavidin that renders it largely resistant to proteolysis by trypsin and thereby dramatically reduces the amount of streptavidin contamination in the sample. This rapid and robust approach improves the effectiveness of mass spectrometry-based characterization of streptavidin-purified samples making it broadly useful for a wide variety of applications. In addition, we show that this chemical protection strategy can also be applied to other affinity matrices including immobilized antibodies against HA epitopes.


Asunto(s)
Proteolisis , Estreptavidina/química , Tripsina/metabolismo , Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Proteómica/métodos
11.
Mol Cell ; 75(2): 382-393.e5, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31229404

RESUMEN

The iron-sensing protein FBXL5 is the substrate adaptor for a SKP1-CUL1-RBX1 E3 ubiquitin ligase complex that regulates the degradation of iron regulatory proteins (IRPs). Here, we describe a mechanism of FBXL5 regulation involving its interaction with the cytosolic Fe-S cluster assembly (CIA) targeting complex composed of MMS19, FAM96B, and CIAO1. We demonstrate that the CIA-targeting complex promotes the ability of FBXL5 to degrade IRPs. In addition, the FBXL5-CIA-targeting complex interaction is regulated by oxygen (O2) tension displaying a robust association in 21% O2 that is severely diminished in 1% O2 and contributes to O2-dependent regulation of IRP degradation. Together, these data identify a novel oxygen-dependent signaling axis that links IRP-dependent iron homeostasis with the Fe-S cluster assembly machinery.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Chaperonas Moleculares/genética , Complejos Multiproteicos/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Proteínas de Ciclo Celular/química , Proteínas F-Box/química , Células HeLa , Homeostasis , Humanos , Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Chaperonas Moleculares/química , Complejos Multiproteicos/química , Oxígeno/metabolismo , Proteolisis , Factores de Transcripción/genética , Complejos de Ubiquitina-Proteína Ligasa/química
12.
J Proteome Res ; 18(4): 1893-1901, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30781952

RESUMEN

The standard approach for proteomic data acquisition of isobaric-tagged samples by mass spectrometry is data-dependent acquisition. This semistochastic, identification-first paradigm generates a wealth of peptide-level data without regard to relative abundance. We introduce a data acquisition concept called sequential windowed acquisition of reporter masses (SWARM). This approach performs quantitation first, thereby allowing subsequent acquisition decisions to be predicated on user-defined patterns of reporter ion intensities. The efficacy of this approach is validated through experiments with both synthetic mixtures of Escherichia coli ribosomes spiked into human cell lysates at known ratios and the quantitative evaluation of the human proteome's response to the inhibition of cullin-based protein ubiquitination via the small molecule MLN4924. We find that SWARM-informed parallel reaction monitoring acquisitions display effective acquisition biasing toward analytes displaying quantitative characteristics of interest, resulting in an improvement in the detection of differentially abundant analytes. The SWARM concept provides a flexible platform for the further development of new acquisition methods.


Asunto(s)
Proteoma , Proteómica/métodos , Espectrometría de Masas en Tándem , Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Escherichia coli/química , Células HEK293 , Humanos , Péptidos/análisis , Péptidos/química , Proteoma/análisis , Proteoma/química
13.
Science ; 362(6419): 1182-1186, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523112

RESUMEN

DNA methylation generally functions as a repressive transcriptional signal, but it is also known to activate gene expression. In either case, the downstream factors remain largely unknown. By using comparative interactomics, we isolated proteins in Arabidopsis thaliana that associate with methylated DNA. Two SU(VAR)3-9 homologs, the transcriptional antisilencing factor SUVH1, and SUVH3, were among the methyl reader candidates. SUVH1 and SUVH3 bound methylated DNA in vitro, were associated with euchromatic methylation in vivo, and formed a complex with two DNAJ domain-containing homologs, DNAJ1 and DNAJ2. Ectopic recruitment of DNAJ1 enhanced gene transcription in plants, yeast, and mammals. Thus, the SUVH proteins bind to methylated DNA and recruit the DNAJ proteins to enhance proximal gene expression, thereby counteracting the repressive effects of transposon insertion near genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Proteínas del Choque Térmico HSP40/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Metiltransferasas/metabolismo , Transcripción Genética , Arabidopsis/enzimología , Proteínas del Choque Térmico HSP40/química , Dominios Proteicos
14.
Cell Metab ; 27(4): 869-885.e6, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617645

RESUMEN

Mitochondria associate with lipid droplets (LDs) in fat-oxidizing tissues, but the functional role of these peridroplet mitochondria (PDM) is unknown. Microscopic observation of interscapular brown adipose tissue reveals that PDM have unique protein composition and cristae structure and remain adherent to the LD in the tissue homogenate. We developed an approach to isolate PDM based on their adherence to LDs. Comparison of purified PDM to cytoplasmic mitochondria reveals that (1) PDM have increased pyruvate oxidation, electron transport, and ATP synthesis capacities; (2) PDM have reduced ß-oxidation capacity and depart from LDs upon activation of brown adipose tissue thermogenesis and ß-oxidation; (3) PDM support LD expansion as Perilipin5-induced recruitment of mitochondria to LDs increases ATP synthase-dependent triacylglyceride synthesis; and (4) PDM maintain a distinct protein composition due to uniquely low fusion-fission dynamics. We conclude that PDM represent a segregated mitochondrial population with unique structure and function that supports triacylglyceride synthesis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Adipocitos/citología , Animales , Transporte de Electrón , Metabolismo Energético , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Oxidación-Reducción , Ácido Pirúvico/metabolismo , Termogénesis
15.
Nat Commun ; 8: 15234, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492234

RESUMEN

Plant cryptochromes undergo blue light-dependent phosphorylation to regulate their activity and abundance, but the protein kinases that phosphorylate plant cryptochromes have remained unclear. Here we show that photoexcited Arabidopsis cryptochrome 2 (CRY2) is phosphorylated in vivo on as many as 24 different residues, including 7 major phosphoserines. We demonstrate that four closely related Photoregulatory Protein Kinases (previously referred to as MUT9-like kinases) interact with and phosphorylate photoexcited CRY2. Analyses of the ppk123 and ppk124 triple mutants and amiR4k artificial microRNA-expressing lines demonstrate that PPKs catalyse blue light-dependent CRY2 phosphorylation to both activate and destabilize the photoreceptor. Phenotypic analyses of these mutant lines indicate that PPKs may have additional substrates, including those involved in the phytochrome signal transduction pathway. These results reveal a mechanism underlying the co-action of cryptochromes and phytochromes to coordinate plant growth and development in response to different wavelengths of solar radiation in nature.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de la radiación , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas , Fosfoserina/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Criptocromos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Fosforilación/efectos de la radiación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
17.
Cell Rep ; 17(6): 1683-1698, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806305

RESUMEN

Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Ensamble y Desensamble de Cromatina , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Subunidades de Proteína/metabolismo , Animales , Ciclo Celular , Movimiento Celular , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Microcefalia/patología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas/genética
18.
J Proteome Res ; 15(12): 4436-4451, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27696855

RESUMEN

Methylation is a common and abundant post-translational modification. High-throughput proteomic investigations have reported many methylation sites from complex mixtures of proteins. The lack of consistency between parallel studies, resulting from both false positives and missed identifications, suggests problems with both over-reporting and under-reporting methylation sites. However, isotope labeling can be used effectively to address the issue of false-positives, and fractionation of proteins can increase the probability of identifying methylation sites in lower abundance. Here we have adapted heavy methyl SILAC to analyze fractions of the budding yeast Saccharomyces cerevisiae under respiratory conditions to allow for the production of mitochondria, an organelle whose proteins are often overlooked in larger methyl proteome studies. We have found 12 methylation sites on 11 mitochondrial proteins as well as an additional 14 methylation sites on 9 proteins that are nonmitochondrial. Of these methylation sites, 20 sites have not been previously reported. This study represents the first characterization of the yeast mitochondrial methyl proteome and the second proteomic investigation of global mitochondrial methylation to date in any organism.


Asunto(s)
Proteoma/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Marcaje Isotópico , Metilación , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica
19.
mSphere ; 1(2)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303719

RESUMEN

Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe here a T. gondii pseudokinase effector, ROP54, that localizes to the vacuole upon invasion and is critical for parasite virulence. Toxoplasma vacuoles lacking ROP54 display an increased loading of the host immune factor GBP2, but not IRGb6, indicating that ROP54 plays a distinct role in immune evasion.

20.
Proc Natl Acad Sci U S A ; 113(3): 632-7, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26721397

RESUMEN

Cilia (eukaryotic flagella) are present in diverse eukaryotic lineages and have essential motility and sensory functions. The cilium's capacity to sense and transduce extracellular signals depends on dynamic trafficking of ciliary membrane proteins. This trafficking is often mediated by the Bardet-Biedl Syndrome complex (BBSome), a protein complex for which the precise subcellular distribution and mechanisms of action are unclear. In humans, BBSome defects perturb ciliary membrane protein distribution and manifest clinically as Bardet-Biedl Syndrome. Cilia are also important in several parasites that cause tremendous human suffering worldwide, yet biology of the parasite BBSome remains largely unexplored. We examined BBSome functions in Trypanosoma brucei, a flagellated protozoan parasite that causes African sleeping sickness in humans. We report that T. brucei BBS proteins assemble into a BBSome that interacts with clathrin and is localized to membranes of the flagellar pocket and adjacent cytoplasmic vesicles. Using BBS gene knockouts and a mouse infection model, we show the T. brucei BBSome is dispensable for flagellar assembly, motility, bulk endocytosis, and cell viability but required for parasite virulence. Quantitative proteomics reveal alterations in the parasite surface proteome of BBSome mutants, suggesting that virulence defects are caused by failure to maintain fidelity of the host-parasite interface. Interestingly, among proteins altered are those with ubiquitination-dependent localization, and we find that the BBSome interacts with ubiquitin. Collectively, our data indicate that the BBSome facilitates endocytic sorting of select membrane proteins at the base of the cilium, illuminating BBSome roles at a critical host-pathogen interface and offering insights into BBSome molecular mechanisms.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Endocitosis , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidad , Animales , Clatrina/metabolismo , Flagelos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Parásitos/patogenicidad , Unión Proteica , Transporte de Proteínas , Vesículas Transportadoras/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...