Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(8): 1702-1711, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38433715

RESUMEN

Serotonin-releasing fibers depart from the raphe nuclei to profusely innervate the entire central nervous system, displaying in some brain regions high structural plasticity in response to genetically induced abrogation of serotonin synthesis. Chronic fluoxetine treatment used as a tool to model peri-physiological, clinically relevant serotonin elevation is also able to cause structural rearrangements of the serotonergic fibers innervating the hippocampus. Whether this effect is limited to hippocampal-innervating fibers or extends to other populations of axons is not known. Here, we used confocal imaging and three-dimensional (3-D) modeling analysis to expand our morphological investigation of fluoxetine-mediated effects on serotonergic circuitry. We found that chronic treatment with a behaviorally active dose of fluoxetine affects the morphology and reduces the density of serotonergic axons innervating the medial prefrontal cortex, a brain region strongly implicated in the regulation of depressive- and anxiety-like behavior. Axons innervating the somatosensory cortex were unaffected, suggesting differential susceptibility to serotonin changes across cortical areas. Importantly, a 1-month washout period was sufficient to reverse morphological changes in both the medial prefrontal cortex and in the previously characterized hippocampus, as well as to normalize behavior, highlighting an intriguing relationship between axon density and an antidepressant-like effect. Overall, these results further demonstrate the bidirectional plasticity of defined serotonergic axons and provide additional insights into fluoxetine effects on the serotonergic system.


Asunto(s)
Fluoxetina , Serotonina , Fluoxetina/farmacología , Serotonina/farmacología , Antidepresivos/farmacología , Hipocampo , Encéfalo
2.
Transl Psychiatry ; 12(1): 305, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915065

RESUMEN

The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Adulto , Animales , Ácido Aspártico/metabolismo , Trastorno del Espectro Autista/genética , D-Aspartato Oxidasa/química , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Duplicación de Gen , Humanos , Discapacidad Intelectual/genética , Trastornos de la Memoria/genética , Ratones , Oxidorreductasas , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Nat Commun ; 12(1): 6084, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667149

RESUMEN

Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Sinapsis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Niño , Femenino , Haploinsuficiencia , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/genética , Serina-Treonina Quinasas TOR/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
4.
Neurobiol Dis ; 158: 105448, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34280523

RESUMEN

INTRODUCTION: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. METHODS: Mice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. RESULTS: Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. CONCLUSION: We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.


Asunto(s)
Neostriado/fisiología , Plasticidad Neuronal/fisiología , Serotonina/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Fenómenos Electrofisiológicos , Femenino , Ácido Glutámico/fisiología , Potenciación a Largo Plazo , Masculino , Ratones , Fibras Nerviosas , Enfermedad de Parkinson Secundaria/fisiopatología , Caracteres Sexuales , Transmisión Sináptica/fisiología , Triptófano Hidroxilasa/metabolismo
5.
J Neurosci ; 39(27): 5299-5310, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31061091

RESUMEN

Mutations in the synaptic scaffolding protein SHANK3 are a major cause of autism and are associated with prominent intellectual and language deficits. However, the neural mechanisms whereby SHANK3 deficiency affects higher-order socio-communicative functions remain unclear. Using high-resolution functional and structural MRI in adult male mice, here we show that loss of Shank3 (Shank3B-/-) results in disrupted local and long-range prefrontal and frontostriatal functional connectivity. We document that prefrontal hypoconnectivity is associated with reduced short-range cortical projections density, and reduced gray matter volume. Finally, we show that prefrontal disconnectivity is predictive of social communication deficits, as assessed with ultrasound vocalization recordings. Collectively, our results reveal a critical role of SHANK3 in the development of prefrontal anatomy and function, and suggest that SHANK3 deficiency may predispose to intellectual disability and socio-communicative impairments via dysregulation of higher-order cortical connectivity.SIGNIFICANCE STATEMENT Mutations in the synaptic scaffolding protein SHANK3 are commonly associated with autism, intellectual, and language deficits. Previous research has linked SHANK3 deficiency to basal ganglia dysfunction, motor stereotypies, and social deficits. However, the neural mechanism whereby Shank3 gene mutations affects cortical functional connectivity and higher-order socio-communicative functions remain unclear. Here we show that loss of SHANK3 in mice results in largely disrupted functional connectivity and abnormal gray matter anatomy in prefrontal areas. We also show that prefrontal connectivity disruption is tightly linked to socio-communicative deficits. Our findings suggest that SHANK3 is a critical orchestrator of frontocortical function, and that disrupted connectivity of prefrontal areas may underpin socio-communicative impairments observed in SHANK3 mutation carriers.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas del Tejido Nervioso/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Vocalización Animal/fisiología , Animales , Mapeo Encefálico , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/patología , Imagen por Resonancia Magnética , Masculino , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/patología , Conducta Social
6.
Nat Methods ; 15(11): 969-976, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377377

RESUMEN

Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation.


Asunto(s)
Potenciales de Acción , Hiperalgesia/fisiopatología , Neuronas/fisiología , Optogenética , Dolor/fisiopatología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Proteínas Recombinantes de Fusión/metabolismo , Animales , Femenino , Luz , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Paclitaxel/toxicidad , Dolor/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Pez Cebra
7.
Cereb Cortex ; 28(4): 1141-1153, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28184409

RESUMEN

Functional connectivity aberrancies, as measured with resting-state functional magnetic resonance imaging (rsfMRI), have been consistently observed in the brain of autism spectrum disorders (ASD) patients. However, the genetic and neurobiological underpinnings of these findings remain unclear. Homozygous mutations in contactin associated protein-like 2 (CNTNAP2), a neurexin-related cell-adhesion protein, are strongly linked to autism and epilepsy. Here we used rsfMRI to show that homozygous mice lacking Cntnap2 exhibit reduced long-range and local functional connectivity in prefrontal and midline brain "connectivity hubs." Long-range rsfMRI connectivity impairments affected heteromodal cortical regions and were prominent between fronto-posterior components of the mouse default-mode network, an effect that was associated with reduced social investigation, a core "autism trait" in mice. Notably, viral tracing revealed reduced frequency of prefrontal-projecting neural clusters in the cingulate cortex of Cntnap2-/- mutants, suggesting a possible contribution of defective mesoscale axonal wiring to the observed functional impairments. Macroscale cortico-cortical white-matter organization appeared to be otherwise preserved in these animals. These findings reveal a key contribution of ASD-associated gene CNTNAP2 in modulating macroscale functional connectivity, and suggest that homozygous loss-of-function mutations in this gene may predispose to neurodevelopmental disorders and autism through a selective dysregulation of connectivity in integrative prefrontal areas.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/patología , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/diagnóstico por imagen , Sustancia Blanca/fisiopatología , Animales , Trastorno Autístico/psicología , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Femenino , Procesamiento de Imagen Asistido por Computador , Relaciones Interpersonales , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Oxígeno/sangre , Transducción Genética , Sustancia Blanca/diagnóstico por imagen , Proteína Fluorescente Roja
8.
Front Cell Neurosci ; 11: 202, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769763

RESUMEN

Serotonin (5-HT)-synthetizing neurons, which are confined in the raphe nuclei of the rhombencephalon, provide a pervasive innervation of the central nervous system (CNS) and are involved in the modulation of a plethora of functions in both developing and adult brain. Classical studies have described the post-natal development of serotonergic axons as a linear process of terminal field innervation. However, technical limitations have hampered a fine morphological characterization. With the advent of genetic mouse models, the possibility to label specific neuronal populations allowed the rigorous measurement of their axonal morphological features as well as their developmental dynamics. Here, we used the Tph2GFP knock-in mouse line, in which GFP expression allows punctual identification of serotonergic neurons and axons, for confocal microscope imaging and we performed 3-dimensional reconstruction in order to morphologically characterize the development of serotonergic fibers in specified brain targets from birth to adulthood. Our analysis highlighted region-specific developmental patterns of serotonergic fiber density ranging from a linear and progressive colonization of the target (Caudate/Putamen, Basolateral Amygdala, Geniculate Nucleus and Substantia Nigra) to a transient increase in fiber density (medial Prefrontal Cortex, Globus Pallidus, Somatosensory Cortex and Hippocampus) occurring with a region-specific timing. Despite a common pattern of early post-natal morphological maturation in which a progressive rearrangement from a dot-shaped to a regular and smooth fiber morphology was observed, starting from post-natal day 28 serotonergic fibers acquire the region specific morphological features present in the adult. In conclusion, we provided novel, target-specific insights on the morphology and temporal dynamics of the developing serotonergic fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...