Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585770

RESUMEN

Human NAT10 acetylates the N4 position of cytidine in RNA, predominantly on rRNA and tRNA, to facilitate ribosome biogenesis and protein translation. NAT10 has been proposed as a therapeutic target in cancers as well as aging-associated pathologies such as Hutchinson-Gilford Progeria Syndrome (HGPS). The ∼120 kDa NAT10 protein uses its acetyl-CoA-dependent acetyltransferase, ATP-dependent helicase, and RNA binding domains in concert to mediate RNA-specific N4-cytidine acetylation. While the biochemical activity of NAT10 is well known, the molecular basis for catalysis of eukaryotic RNA acetylation remains relatively undefined. To provide molecular insights into the RNA-specific acetylation by NAT10, we determined the single particle cryo-EM structures of Chaetomium thermophilum NAT10 ( Ct NAT10) bound to a bisubstrate cytidine-CoA probe with and without ADP. The structures reveal that NAT10 forms a symmetrical heart-shaped dimer with conserved functional domains surrounding the acetyltransferase active sites harboring the cytidine-CoA probe. Structure-based mutagenesis with analysis of mutants in vitro supports the catalytic role of two conserved active site residues (His548 and Tyr549 in Ct NAT10), and two basic patches, both proximal and distal to the active site for RNA-specific acetylation. Yeast complementation analyses and senescence assays in human cells also implicates NAT10 catalytic activity in yeast thermoadaptation and cellular senescence. Comparison of the NAT10 structure to protein lysine and N-terminal acetyltransferase enzymes reveals an unusually open active site suggesting that these enzymes have been evolutionarily tailored for RNA recognition and cytidine-specific acetylation.

2.
Microbiol Spectr ; 12(4): e0389623, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376151

RESUMEN

The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.


Asunto(s)
Acetaldehído/análogos & derivados , Antiinfecciosos , Infecciones por Escherichia coli , Pentosafosfatos , Profármacos , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Ratones , Infecciones Urinarias/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Antiinfecciosos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli Uropatógena/metabolismo
3.
Nature ; 608(7921): 192-198, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896750

RESUMEN

In response to hormones and growth factors, the class I phosphoinositide-3-kinase (PI3K) signalling network functions as a major regulator of metabolism and growth, governing cellular nutrient uptake, energy generation, reducing cofactor production and macromolecule biosynthesis1. Many of the driver mutations in cancer with the highest recurrence, including in receptor tyrosine kinases, Ras, PTEN and PI3K, pathologically activate PI3K signalling2,3. However, our understanding of the core metabolic program controlled by PI3K is almost certainly incomplete. Here, using mass-spectrometry-based metabolomics and isotope tracing, we show that PI3K signalling stimulates the de novo synthesis of one of the most pivotal metabolic cofactors: coenzyme A (CoA). CoA is the major carrier of activated acyl groups in cells4,5 and is synthesized from cysteine, ATP and the essential nutrient vitamin B5 (also known as pantothenate)6,7. We identify pantothenate kinase 2 (PANK2) and PANK4 as substrates of the PI3K effector kinase AKT8. Although PANK2 is known to catalyse the rate-determining first step of CoA synthesis, we find that the minimally characterized but highly conserved PANK49 is a rate-limiting suppressor of CoA synthesis through its metabolite phosphatase activity. Phosphorylation of PANK4 by AKT relieves this suppression. Ultimately, the PI3K-PANK4 axis regulates the abundance of acetyl-CoA and other acyl-CoAs, CoA-dependent processes such as lipid metabolism and proliferation. We propose that these regulatory mechanisms coordinate cellular CoA supplies with the demands of hormone/growth-factor-driven or oncogene-driven metabolism and growth.


Asunto(s)
Coenzima A , Ácido Pantoténico , Fosfatidilinositol 3-Quinasa , Acetilcoenzima A/metabolismo , Adenosina Trifosfato/metabolismo , Proliferación Celular , Coenzima A/biosíntesis , Coenzima A/química , Cisteína/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Metabolómica , Ácido Pantoténico/química , Ácido Pantoténico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
4.
J Lipid Res ; 63(6): 100224, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568254

RESUMEN

Anabolic metabolism of carbon in mammals is mediated via the one- and two-carbon carriers S-adenosyl methionine and acetyl-coenzyme A. In contrast, anabolic metabolism of three-carbon units via propionate has not been shown to extensively occur. Mammals are primarily thought to oxidize the three-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. Here, we found that this may not be absolute as, in mammals, one nonoxidative fate of propionyl-CoA is to condense to two three-carbon units into a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this reaction pathway using purified protein extracts provided limited substrates and verified the product via LC-MS using a synthetic standard. In whole-body in vivo stable isotope tracing following infusion of 13C-labeled valine at steady state, 2M2PE-CoA was found to form via propionyl-CoA in multiple murine tissues, including heart, kidney, and to a lesser degree, in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA also formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three- to six-carbon reaction conserved in humans and mice that utilizes propionate.


Asunto(s)
Carbono , Propionatos , Acetilcoenzima A/metabolismo , Acilcoenzima A/metabolismo , Animales , Carbono/metabolismo , Hígado/metabolismo , Ratones , Oxidación-Reducción
5.
J Am Chem Soc ; 144(8): 3487-3496, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35172571

RESUMEN

N4-Acetylcytidine (ac4C) is a post-transcriptional modification of RNA that is conserved across all domains of life. All characterized sites of ac4C in eukaryotic RNA occur in the central nucleotide of a 5'-CCG-3' consensus sequence. However, the thermodynamic consequences of cytidine acetylation in this context have never been assessed due to its challenging synthesis. Here, we report the synthesis and biophysical characterization of ac4C in its endogenous eukaryotic sequence context. First, we develop a synthetic route to homogeneous RNAs containing electrophilic acetyl groups. Next, we use thermal denaturation to interrogate the biochemical effects of ac4C on duplex stability and mismatch discrimination in a native sequence found in human rRNA. Finally, we demonstrate the ability of this chemistry to incorporate ac4C into the complex modification landscape of human tRNA and use duplex melting to highlight an enforcing role for ac4C in this unique sequence context. By enabling ex vivo biophysical analyses of nucleic acid acetylation in its physiological sequence context, these studies establish a chemical foundation for understanding the function of a universally conserved nucleobase in biology and disease.


Asunto(s)
Citidina , ARN , Acetilación , Citidina/análogos & derivados , Citidina/metabolismo , Humanos , Conformación de Ácido Nucleico , Nucleótidos , ARN/química
6.
Chem Soc Rev ; 50(17): 9482-9502, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34259263

RESUMEN

Methods to accurately determine the location and abundance of RNA modifications are critical to understanding their functional role. In this review, we describe recent efforts in which chemical reactivity and next-generation sequencing have been integrated to detect modified nucleotides in RNA. For eleven exemplary modifications, we detail chemical, enzymatic, and metabolic labeling protocols that can be used to differentiate them from canonical nucleobases. By emphasizing the molecular rationale underlying these detection methods, our survey highlights new opportunities for chemistry to define the role of RNA modifications in disease.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN , Secuencia de Bases , Nucleótidos
7.
Open Biol ; 10(9): 200187, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32961073

RESUMEN

Lysine lactoylation is a recently described protein post-translational modification (PTM). However, the biochemical pathways responsible for this acylation remain unclear. Two metabolite-dependent mechanisms have been proposed: enzymatic histone lysine lactoylation derived from lactoyl-coenzyme A (lactoyl-CoA, also termed lactyl-CoA), and non-enzymatic lysine lactoylation resulting from acyl-transfer via lactoyl-glutathione. While the former has precedent in the form of enzyme-catalysed lysine acylation, the lactoyl-CoA metabolite has not been previously quantified in mammalian systems. Here, we use liquid chromatography-high-resolution mass spectrometry (LC-HRMS) together with a synthetic standard to detect and validate the presence of lactoyl-CoA in cell and tissue samples. Conducting a retrospective analysis of data from previously analysed samples revealed the presence of lactoyl-CoA in diverse cell and tissue contexts. In addition, we describe a biosynthetic route to generate 13C315N1-isotopically labelled lactoyl-CoA, providing a co-eluting internal standard for analysis of this metabolite. We estimate lactoyl-CoA concentrations of 1.14 × 10-8 pmol per cell in cell culture and 0.0172 pmol mg-1 tissue wet weight in mouse heart. These levels are similar to crotonyl-CoA, but between 20 and 350 times lower than predominant acyl-CoAs such as acetyl-, propionyl- and succinyl-CoA. Overall our studies provide the first quantitative measurements of lactoyl-CoA in metazoans, and provide a methodological foundation for the interrogation of this novel metabolite in biology and disease.


Asunto(s)
Acilcoenzima A/metabolismo , Cromatografía Liquida , Espectrometría de Masas , Acilcoenzima A/análisis , Acilcoenzima A/química , Animales , Biomarcadores , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Redes y Vías Metabólicas , Metabolómica/métodos , Ratones , Estructura Molecular , Especificidad de Órganos
8.
ACS Infect Dis ; 5(3): 406-417, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30614674

RESUMEN

To fight the growing threat of antibiotic resistance, new antibiotics are required that target essential bacterial processes other than protein, DNA/RNA, and cell wall synthesis, which constitute the majority of currently used antibiotics. 1-Deoxy-d-xylulose-5-phosphate (DXP) synthase is a vital enzyme in bacterial central metabolism, feeding into the de novo synthesis of thiamine diphosphate, pyridoxal phosphate, and essential isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate. While potent and selective inhibitors of DXP synthase in vitro activity have been discovered, their antibacterial activity is modest. To improve the antibacterial activity of selective alkyl acetylphosphonate (alkylAP) inhibitors of DXP synthase, we synthesized peptidic enamide prodrugs of alkylAPs inspired by the natural product dehydrophos, a prodrug of methyl acetylphosphonate. This prodrug strategy achieves dramatic increases in activity against Gram-negative pathogens for two alkylAPs, butyl acetylphosphonate and homopropargyl acetylphosphonate, decreasing minimum inhibitory concentrations against Escherichia coli by 33- and nearly 2000-fold, respectively. Antimicrobial studies and LC-MS/MS analysis of alkylAP-treated E. coli establish that the increased potency of prodrugs is due to increased accumulation of alkylAP inhibitors of DXP synthase via transport of the prodrug through the OppA peptide permease and subsequent amide hydrolysis. This work demonstrates the promise of targeting DXP synthase for the development of novel antibacterial agents.


Asunto(s)
Antibacterianos/química , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Profármacos/química , Transferasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Pentosafosfatos/metabolismo , Profármacos/farmacología , Transferasas/química , Transferasas/metabolismo
9.
Acc Chem Res ; 51(10): 2546-2555, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30203647

RESUMEN

Antibiotics are the cornerstone of modern healthcare. The 20th century discovery of sulfonamides and ß-lactam antibiotics altered human society immensely. Simple bacterial infections were no longer a leading cause of morbidity and mortality, and antibiotic prophylaxis greatly reduced the risk of infection from surgery. The current healthcare system requires effective antibiotics to function. However, antibiotic-resistant infections are becoming increasingly prevalent, threatening the emergence of a postantibiotic era. To prevent this public health crisis, antibiotics with novel modes of action are needed. Currently available antibiotics target just a few cellular processes to exert their activity: DNA, RNA, protein, and cell wall biosynthesis. Bacterial central metabolism is underexploited, offering a wealth of potential new targets that can be pursued toward expanding the armamentarium against microbial infections. Discovered in 1997 as the first enzyme in the methylerythritol phosphate (MEP) pathway, 1-deoxy-d-xylulose 5-phosphate (DXP) synthase is a thiamine diphosphate (ThDP)-dependent enzyme that catalyzes the decarboxylative condensation of pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to form DXP. This five-carbon metabolite feeds into three separate essential pathways for bacterial central metabolism: ThDP synthesis, pyridoxal phosphate (PLP) synthesis, and the MEP pathway for isoprenoid synthesis. While it has long been identified as a target for the development of antimicrobial agents, limited progress has been made toward developing selective inhibitors of the enzyme. This Account highlights advances from our lab over the past decade to understand this important and unique enzyme. Unlike all other known ThDP-dependent enzymes, DXP synthase uses a random-sequential mechanism that requires the formation of a ternary complex prior to decarboxylation of the lactyl-ThDP intermediate. Its large active site accommodates a variety of acceptor substrates, lending itself to a number of alternative activities, such as the production of α-hydroxy ketones, hydroxamates, amides, acetolactate, and peracetate. Knowledge gained from mechanistic and substrate-specificity studies has guided the development of selective inhibitors with antibacterial activity and provides a biochemical foundation toward understanding DXP synthase function in bacterial cells. Although it is a promising drug target, the centrality of DXP synthase in bacterial metabolism imparts specific challenges to assessing antibacterial activity of DXP synthase inhibitors, and the susceptibility of most bacteria to current DXP synthase inhibitors is remarkably culture-medium-dependent. Despite these challenges, the study of DXP synthase is poised to reveal the role of DXP synthase in bacterial metabolic adaptability during infection, ultimately providing a more complete picture of how inhibiting this crucial enzyme can be used to develop novel antibiotics.


Asunto(s)
Bacterias/metabolismo , Inhibidores Enzimáticos/metabolismo , Transferasas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Bacterias/efectos de los fármacos , Biocatálisis , Dominio Catalítico , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Especificidad por Sustrato , Transferasas/antagonistas & inhibidores
10.
Biochemistry ; 57(29): 4349-4356, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29944345

RESUMEN

The bacterial metabolite 1-deoxy-d-xyulose 5-phosphate (DXP) is essential in bacterial central metabolism feeding into isoprenoid, thiamin diphosphate (ThDP), and pyridoxal phosphate de novo biosynthesis. Halting its production through the inhibition of DXP synthase is an attractive strategy for the development of novel antibiotics. Recent work has revealed that DXP synthase utilizes a unique random sequential mechanism that requires formation of a ternary complex among pyruvate-derived C2α-lactylthiamin diphosphate (LThDP), d-glyceraldehyde 3-phosphate (d-GAP), and enzyme, setting it apart from all other known ThDP-dependent enzymes. Herein, we describe the development of bisubstrate inhibitors bearing an acetylphosphonate (AP) pyruvate mimic and a distal negative charge mimicking the phosphoryl group of d-GAP, designed to target the unique form of DXP synthase that binds LThDP and d-GAP in a ternary complex. A d-phenylalanine-derived triazole acetylphosphonate (d-PheTrAP) emerged as the most potent inhibitor in this series, displaying slow, tight-binding inhibition with a Ki* of 90 ± 10 nM, forward ( k1) and reverse ( k2) isomerization rates of 1.1 and 0.14 min-1, respectively, and exquisite selectivity (>15000-fold) for DXP synthase over mammalian pyruvate dehydrogenase. d-PheTrAP is the most potent, selective DXP synthase inhibitor described to date and represents the first inhibitor class designed specifically to exploit the unique E-LThDP-GAP ternary complex in ThDP enzymology.


Asunto(s)
Acetaldehído/análogos & derivados , Deinococcus/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Transferasas/antagonistas & inhibidores , Acetaldehído/química , Acetaldehído/farmacología , Deinococcus/efectos de los fármacos , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Pentosafosfatos/metabolismo , Transferasas/metabolismo
11.
J Org Chem ; 83(17): 9580-9591, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29870251

RESUMEN

Targeting essential bacterial processes beyond cell wall, protein, nucleotide, and folate syntheses holds promise to reveal new antimicrobial agents and expand the potential drugs available for combination therapies. The synthesis of isoprenoid precursors, isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), is vital for all organisms; however, humans use the mevalonate pathway for production of IDP/DMADP while many pathogens, including Plasmodium falciparum and Mycobacterium tuberculosis, use the orthogonal methylerythritol phosphate (MEP) pathway. Toward developing novel antimicrobial agents, we have designed and synthesized a series of phosphonyl analogues of MEP and evaluated their abilities to interact with IspD, both as inhibitors of the natural reaction and as antimetabolite alternative substrates that could be processed enzymatically to form stable phosphonyl analogues as potential inhibitors of downstream MEP pathway intermediates. In this compound series, the S-monofluoro MEP analogue displays the most potent inhibitory activity against Escherichia coli IspD and is the best substrate for both the E. coli and P. falciparum IspD orthologues with a Km approaching that of the natural substrate for the E. coli enzyme. This work represents a first step toward the development of phosphonyl MEP antimetabolites to modulate early isoprenoid biosynthesis in human pathogens.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Eritritol/análogos & derivados , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Isomerasas Aldosa-Cetosa/química , Alquilación , Dominio Catalítico , Técnicas de Química Sintética , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Eritritol/síntesis química , Eritritol/química , Eritritol/metabolismo , Eritritol/farmacología , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Complejos Multienzimáticos/química , Oxidorreductasas/química , Estereoisomerismo
12.
PLoS One ; 13(5): e0197638, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29771999

RESUMEN

The in vivo microenvironment of bacterial pathogens is often characterized by nutrient limitation. Consequently, conventional rich in vitro culture conditions used widely to evaluate antibacterial agents are often poorly predictive of in vivo activity, especially for agents targeting metabolic pathways. In one such pathway, the methylerythritol phosphate (MEP) pathway, which is essential for production of isoprenoids in bacterial pathogens, relatively little is known about the influence of growth environment on antibacterial properties of inhibitors targeting enzymes in this pathway. The early steps of the MEP pathway are catalyzed by 1-deoxy-d-xylulose 5-phosphate (DXP) synthase and reductoisomerase (IspC). The in vitro antibacterial efficacy of the DXP synthase inhibitor butylacetylphosphonate (BAP) was recently reported to be strongly dependent upon growth medium, with high potency observed under nutrient limitation and exceedingly weak activity in nutrient-rich conditions. In contrast, the well-known IspC inhibitor fosmidomycin has potent antibacterial activity in nutrient-rich conditions, but to date, its efficacy had not been explored under more relevant nutrient-limited conditions. The goal of this work was to thoroughly characterize the effects of BAP and fosmidomycin on bacterial cells under varied growth conditions. In this work, we show that activities of both inhibitors, alone and in combination, are strongly dependent upon growth medium, with differences in cellular uptake contributing to variance in potency of both agents. Fosmidomycin is dissimilar to BAP in that it displays relatively weaker activity in nutrient-limited compared to nutrient-rich conditions. Interestingly, while it has been generally accepted that fosmidomycin activity depends upon expression of the GlpT transporter, our results indicate for the first time that fosmidomycin can enter cells by an alternative mechanism under nutrient limitation. Finally, we show that the potency and relationship of the BAP-fosmidomycin combination also depends upon the growth medium, revealing a striking loss of BAP-fosmidomycin synergy under nutrient limitation. This change in BAP-fosmidomycin relationship suggests a shift in the metabolic and/or regulatory networks surrounding DXP accompanying the change in growth medium, the understanding of which could significantly impact targeting strategies against this pathway. More generally, our findings emphasize the importance of considering physiologically relevant growth conditions for predicting the antibacterial potential MEP pathway inhibitors and for studies of their intracellular targets.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Antibacterianos/farmacología , Medios de Cultivo/farmacología , Enterobacteriaceae/efectos de los fármacos , Eritritol/análogos & derivados , Eritritol/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Fosfomicina/análogos & derivados , Nutrientes/farmacología , Organofosfonatos/farmacología , Transferasas/antagonistas & inhibidores , Bacillus thuringiensis/efectos de los fármacos , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/crecimiento & desarrollo , Interacciones Farmacológicas , Enterobacteriaceae/enzimología , Enterobacteriaceae/crecimiento & desarrollo , Fosfomicina/farmacología , Redes y Vías Metabólicas , Pruebas de Sensibilidad Microbiana , Complejos Multienzimáticos/metabolismo , Terpenos/metabolismo
13.
Mol Microbiol ; 106(3): 439-451, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28836704

RESUMEN

Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox-gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox-dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways.


Asunto(s)
Lipoilación/genética , Lipoilación/fisiología , Chlamydia/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Nucleotidiltransferasas , Oxidación-Reducción , Péptido Sintasas/genética , Plasmodium/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Alineación de Secuencia
14.
ACS Infect Dis ; 3(7): 467-478, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28636325

RESUMEN

1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate. DXP is at a metabolic branch point in bacteria, feeding into the methylerythritol phosphate pathway to indispensable isoprenoids and acting as a precursor for biosynthesis of essential cofactors in central metabolism, pyridoxal phosphate and ThDP, the latter of which is also required for DXP synthase catalysis. DXP synthase follows a unique random sequential mechanism and possesses an unusually large active site. These features have guided the design of sterically demanding alkylacetylphosphonates (alkylAPs) toward the development of selective DXP synthase inhibitors. alkylAPs studied here display selective, low µM inhibitory activity against DXP synthase. They are weak inhibitors of bacterial growth in standard nutrient rich conditions. However, bacteria are significantly sensitized to most alkylAPs in defined minimal growth medium, with minimal inhibitory concentrations (MICs) ranging from low µM to low mM and influenced by alkyl-chain length. The longest analog (C8) displays the weakest antimicrobial activity and is a substrate for efflux via AcrAB-TolC. The dependence of inhibitor potency on growth environment emphasizes the need for antimicrobial screening conditions that are relevant to the in vivo microbial microenvironment during infection. DXP synthase expression and thiamin supplementation studies offer support for DXP synthase as an intracellular target for some alkylAPs and reveal both the challenges and intriguing aspects of these approaches to study target engagement.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Organofosfonatos/farmacología , Transferasas/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Antibacterianos/síntesis química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Inhibidores Enzimáticos/síntesis química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Gliceraldehído 3-Fosfato/metabolismo , Pruebas de Sensibilidad Microbiana , Organofosfonatos/síntesis química , Plásmidos/química , Plásmidos/metabolismo , Fosfato de Piridoxal/metabolismo , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiamina Pirofosfato/metabolismo , Transferasas/genética , Transferasas/metabolismo
15.
Chembiochem ; 16(12): 1771-81, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26174207

RESUMEN

1-Deoxy-D-xylulose 5-phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branch point, serving also as a precursor in the biosynthesis of vitamins B1 and B6, which are critical for central metabolism. In an effort to identify new bisubstrate analogue inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated. Trihydroxybenzaldoximes emerged as reversible, low-micromolar inhibitors, competitive against D-glyceraldehyde 3-phosphate (D-GAP) and either uncompetitive or noncompetitive against pyruvate. Hydroxybenzaldoximes are the first class of D-GAP-competitive DXP synthase inhibitors, offering new tools for mechanistic studies of DXP synthase and a new direction for the development of antimicrobial agents targeting isoprenoid biosynthesis.


Asunto(s)
Escherichia coli/enzimología , Oximas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Transferasas/antagonistas & inhibidores , Unión Competitiva , Diseño de Fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Hidroxilación , Oximas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Transferasas/química , Transferasas/metabolismo
16.
Mol Microbiol ; 94(1): 156-71, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25116855

RESUMEN

Lipoate scavenging from the human host is essential for malaria parasite survival. Scavenged lipoate is covalently attached to three parasite proteins: the H-protein and the E2 subunits of branched chain amino acid dehydrogenase (BCDH) and α-ketoglutarate dehydrogenase (KDH). We show mitochondrial localization for the E2 subunits of BCDH and KDH, similar to previously localized H-protein, demonstrating that all three lipoylated proteins reside in the parasite mitochondrion. The lipoate ligase 1, LipL1, has been shown to reside in the mitochondrion and it catalyses the lipoylation of the H-protein; however, we show that LipL1 alone cannot lipoylate BCDH or KDH. A second mitochondrial protein with homology to lipoate ligases, LipL2, does not show ligase activity and is not capable of lipoylating any of the mitochondrial substrates. Instead, BCDH and KDH are lipoylated through a novel mechanism requiring both LipL1 and LipL2. This mechanism is sensitive to redox conditions where BCDH and KDH are exclusively lipoylated under strong reducing conditions in contrast to the H-protein which is preferentially lipoylated under less reducing conditions. Thus, malaria parasites contain two different routes of mitochondrial lipoylation, an arrangement that has not been described for any other organism.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Humanos , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Lipoilación , Malaria Falciparum/parasitología , Proteínas Mitocondriales/genética , Oxidación-Reducción , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética
17.
J Med Chem ; 57(11): 4521-31, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24786226

RESUMEN

Atg8 is a ubiquitin-like autophagy protein in eukaryotes that is covalently attached (lipidated) to the elongating autophagosomal membrane. Autophagy is increasingly appreciated as a target in diverse diseases from cancer to eukaryotic parasitic infections. Some of the autophagy machinery is conserved in the malaria parasite, Plasmodium. Although Atg8's function in the parasite is not well understood, it is essential for Plasmodium growth and survival and partially localizes to the apicoplast, an indispensable organelle in apicomplexans. Here, we describe the identification of inhibitors from the Malaria Medicine Venture Malaria Box against the interaction of PfAtg8 with its E2-conjugating enzyme, PfAtg3, by surface plasmon resonance. Inhibition of this protein-protein interaction prevents PfAtg8 lipidation with phosphatidylethanolamine. These small molecule inhibitors share a common scaffold and have activity against both blood and liver stages of infection by Plasmodium falciparum. We have derivatized this scaffold into a functional platform for further optimization.


Asunto(s)
Antimaláricos/química , Bases de Datos de Compuestos Químicos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/farmacología , Sitios de Unión , Sangre , Estadios del Ciclo de Vida , Hígado/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Piridinas/química , Piridinas/farmacología , Tiazoles/química , Tiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...