Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
J Clin Med ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38673656

RESUMEN

Ventricular fibrillation (VF) is a common cause of sudden cardiac death in patients with channelopathies, particularly in the young population. Although pharmacological treatment, cardiac sympathectomy, and implantable cardioverter defibrillators (ICD) have been the mainstay in the management of VF in patients with channelopathies, they are associated with significant adverse effects and complications, leading to poor quality of life. Given these drawbacks, catheter ablation has been proposed as a therapeutic option for patients with channelopathies. Advances in imaging techniques and modern mapping technologies have enabled increased precision in identifying arrhythmia triggers and substrate modification. This has aided our understanding of the underlying pathophysiology of ventricular arrhythmias in channelopathies, highlighting the roles of the Purkinje network and the epicardial right ventricular outflow tract in arrhythmogenesis. This review explores the role of catheter ablation in managing the most common channelopathies (Brugada syndrome, congenital long QT syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia). While the initial results for ablation in Brugada syndrome are promising, the long-term efficacy and durability of ablation in different channelopathies require further investigation. Given the genetic and phenotypic heterogeneity of channelopathies, future studies are needed to show whether catheter ablation in patients with channelopathies is associated with a reduction in VF, and psychological distress stemming from recurrent ICD shocks, particularly relative to other available therapeutic options (e.g., quinidine in high-risk Brugada patients).

3.
Circ Arrhythm Electrophysiol ; 17(2): e012356, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38264885

RESUMEN

Genetic testing has become standard of care for patients with long QT syndrome (LQTS), providing diagnostic, prognostic, and therapeutic information for both probands and their family members. However, up to a quarter of patients with LQTS do not have identifiable Mendelian pathogenic variants in the currently known LQTS-associated genes. This absence of genetic confirmation, intriguingly, does not lessen the severity of LQTS, with the prognosis in these gene-elusive patients with unequivocal LQTS mirroring genotype-positive patients in the limited data available. Such a conundrum instigates an exploration into the causes of corrected QT interval (QTc) prolongation in these cases, unveiling a broad spectrum of potential scenarios and mechanisms. These include multiple environmental influences on QTc prolongation, exercise-induced repolarization abnormalities, and the profound implications of the constantly evolving nature of genetic testing and variant interpretation. In addition, the rapid advances in genetics have the potential to uncover new causal genes, and polygenic risk factors may aid in the diagnosis of high-risk patients. Navigating this multifaceted landscape requires a systematic approach and expert knowledge, integrating the dynamic nature of genetics and patient-specific influences for accurate diagnosis, management, and counseling of patients. The role of a subspecialized expert cardiogenetic clinic is paramount in evaluation to navigate this complexity. Amid these intricate aspects, this review outlines potential causes of gene-elusive LQTS. It also provides an outline for the evaluation of patients with negative and inconclusive genetic test results and underscores the need for ongoing adaptation and reassessment in our understanding of LQTS, as the complexities of gene-elusive LQTS are increasingly deciphered.


Asunto(s)
Electrocardiografía , Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Genotipo , Factores de Riesgo , Pruebas Genéticas
4.
Phys Chem Chem Phys ; 26(2): 1166-1181, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38099625

RESUMEN

Analysis of the amide I band of proteins is probably the most wide-spread application of bioanalytical infrared spectroscopy. Although highly desirable for a more detailed structural interpretation, a quantitative description of this absorption band is still difficult. This work optimized several electrostatic models with the aim to reproduce the effect of the protein environment on the intrinsic wavenumber of a local amide I oscillator. We considered the main secondary structures - α-helices, parallel and antiparallel ß-sheets - with a maximum of 21 amide groups. The models were based on the electric potential and/or the electric field component along the CO bond at up to four atoms in an amide group. They were bench-marked by comparison to Hessian matrices reconstructed from density functional theory calculations at the BPW91, 6-31G** level. The performance of the electrostatic models depended on the charge set used to calculate the electric field and potential. Gromos and DSSP charge sets, used in common force fields, were not optimal for the better performing models. A good compromise between performance and the stability of model parameters was achieved by a model that considered the electric field at the positions of the oxygen, nitrogen, and hydrogen atoms of the considered amide group. The model describes also some aspects of the local conformation effect and performs similar on its own as in combination with an explicit implementation of the local conformation effect. It is better than a combination of a local hydrogen bonding model with the local conformation effect. Even though the short-range hydrogen bonding model performs worse, it captures important aspects of the local wavenumber sensitivity to the molecular surroundings. We improved also the description of the coupling between local amide I oscillators by developing an electrostatic model for the dependency of the dipole derivative magnitude on the protein environment.


Asunto(s)
Amidas , Proteínas , Amidas/química , Electricidad Estática , Modelos Moleculares , Proteínas/química , Espectrofotometría Infrarroja/métodos
6.
Commun Chem ; 6(1): 163, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537303

RESUMEN

Interactions between molecules are fundamental in biology. They occur also between amyloidogenic peptides or proteins that are associated with different amyloid diseases, which makes it important to study the mutual influence of two polypeptides on each other's properties in mixed samples. However, addressing this research question with imaging techniques faces the challenge to distinguish different polypeptides without adding artificial probes for detection. Here, we show that nanoscale infrared spectroscopy in combination with 13C, 15N-labeling solves this problem. We studied aggregated amyloid-ß peptide (Aß) and its interaction with an inhibitory peptide (NCAM1-PrP) using scattering-type scanning near-field optical microscopy. Although having similar secondary structure, labeled and unlabeled peptides could be distinguished by comparing optical phase images taken at wavenumbers characteristic for either the labeled or the unlabeled peptide. NCAM1-PrP seems to be able to associate with or to dissolve existing Aß fibrils because pure Aß fibrils were not detected after mixing.

7.
ACS Chem Neurosci ; 14(15): 2618-2633, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37487115

RESUMEN

Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-ß (Aß) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aß aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aß production, and these metals bind to Aß peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aß peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aß peptides with affinities in the micromolar range, induce structural changes in Aß monomers and oligomers, and inhibit Aß fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.


Asunto(s)
Enfermedad de Alzheimer , Uranio , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Iones/química , Amiloide
11.
Sci Rep ; 13(1): 3341, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849796

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-ß (Aß) peptides, and Aß oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aß peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aß/Ni(II) interactions in vitro, for different Aß variants: Aß(1-40), Aß(1-40)(H6A, H13A, H14A), Aß(4-40), and Aß(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aß monomers. Equimolar amounts of Ni(II) ions retard Aß aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aß binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aß dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aß monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aß oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aß aggregation processes that are involved in AD brain pathology.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Biofisica , Encéfalo , Iones , Placa Amiloide , Níquel/química
12.
J Am Heart Assoc ; 12(3): e8023, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36718879

RESUMEN

Background Heart failure (HF) has been increasing in prevalence, and a need exists for biomarkers with improved predictive and prognostic ability. GDF-15 (growth differentiation factor-15) is a novel biomarker associated with HF mortality, but no serial studies of GDF-15 have been conducted. This study aimed to investigate the association between GDF-15 levels over time and the occurrence of ventricular arrhythmias, HF hospitalizations, and all-cause mortality. Methods and Results We used a retrospective case-control design to analyze 148 patients with ischemic and nonischemic cardiomyopathies and primary prevention implantable cardioverter-defibrillator (ICD) from the PROSe-ICD (Prospective Observational Study of the ICD in Sudden Cardiac Death Prevention) cohort. Patients had blood drawn every 6 months and after each appropriate ICD therapy and were followed for a median follow-up of 4.6 years, between 2005 to 2019. We compared serum GDF-15 levels within ±90 days of an event among those with a ventricular tachycardia/fibrillation event requiring ICD therapies and those hospitalized for decompensated HF. A comparator/control group comprised patients with GDF-15 levels available during 2-year follow-up periods without events. Median follow-up was 4.6 years in the 148 patients studied (mean age 58±12, 27% women). The HF cohort had greater median GDF-15 values within 90 days (1797 pg/mL) and 30 days (2039 pg/mL) compared with the control group (1062 pg/mL, both P<0.0001). No difference was found between the ventricular tachycardia/fibrillation subgroup within 90 days (1173 pg/mL, P=0.60) or 30 days (1173 pg/mL, P=0.78) and the control group. GDF-15 was also significantly predictive of mortality (hazard ratio, 3.17 [95% CI, 2.33-4.30]). Conclusions GDF-15 levels are associated with HF hospitalization and mortality but not ventricular arrhythmic events.


Asunto(s)
Cardiomiopatías , Factor 15 de Diferenciación de Crecimiento , Insuficiencia Cardíaca , Taquicardia Ventricular , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia , Arritmias Cardíacas/complicaciones , Biomarcadores , Cardiomiopatías/terapia , Cardiomiopatías/complicaciones , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Desfibriladores Implantables , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/complicaciones , Estudios Retrospectivos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/terapia , Taquicardia Ventricular/complicaciones , Fibrilación Ventricular/diagnóstico , Fibrilación Ventricular/terapia , Fibrilación Ventricular/complicaciones
13.
Adv Funct Mater ; 32(23): 2200986, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-36505976

RESUMEN

Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in ß-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high ß-strand propensity and can mediate tight inter-ß-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger ß-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.

15.
J Innov Card Rhythm Manag ; 13(8): 5104-5110, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36072446

RESUMEN

Radiographic identification of the cardiac implantable electronic device (CIED) manufacturer facilitates urgent interrogation of an unknown CIED. In the past, we relied on visualizing a manufacturer-specific X-ray logo. Recently, a free smartphone application ("Pacemaker-ID") was made available. A photograph of a chest X-ray was subjected to an artificial intelligence (AI) algorithm that uses manufacturer characteristics (canister shape, battery design) for identification. We sought to externally validate the accuracy of this smartphone application as a point-of-care (POC) diagnostic tool, compare on-axis to off-axis photo accuracy, and compare it to X-ray logo visualization for manufacturer identification. We reviewed operative reports and chest X-rays in 156 pacemaker and 144 defibrillator patients to visualize X-ray logos and to test the application with 3 standard (on-axis) and 4 non-standard (off-axis) photos (20° cranial; caudal, leftward, and rightward). Contingency tables were created and chi-squared analyses (P < .05) were completed for manufacturer and CIED type. The accuracy of the application was 91.7% and 86.3% with single and serial application(s), respectively; 80.7% with off-axis photos; and helpful for all manufacturers (range, 85.4%-96.6%). Overall, the application proved superior to the X-ray logo, visualized in 56% overall (P < .0001) but varied significantly by manufacturer (range, 7.7%-94.8%; P < .00001). The accuracy of the Pacemaker-ID application is consistent with reports from its creators and superior to X-ray logo visualization. The accuracy of the application as a POC tool can be enhanced and maintained with further AI training using recent CIED models. Some manufacturers can enhance their X-ray logos by improving placement and design.

16.
Nat Commun ; 13(1): 4695, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970823

RESUMEN

Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to ß-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density.


Asunto(s)
Fibroínas , Arañas , Animales , Fibroínas/química , Hidrogeles , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/química , Arañas/metabolismo
17.
NPJ Aging ; 8(1): 10, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35927427

RESUMEN

Age-related differences in stem-cell potency contribute to variable outcomes in clinical stem cell trials. To help understand the effect of age on stem cell potency, bone marrow-derived mesenchymal stem cells (MSCs) were isolated from young (6 weeks) and old (18-24 months) mice. HUVEC tubule formation (TF) induced by the old and young MSCs and ELISA of conditioned media were compared to one another, and to old MSCs after 7 d in indirect co-culture with young MSCs. Old MSCs induced less TF than did young (1.56 ± 0.11 vs 2.38 ± 0.17, p = 0.0003) and released lower amounts of VEGF (p = 0.009) and IGF1 (p = 0.037). After 7 d in co-culture with young MSCs, TF by the old MSCs significantly improved (to 2.09 ± 0.18 from 1.56 ± 0.11; p = 0.013), and was no longer different compared to TF from young MSCs (2.09 ± 0.18 vs 2.38 ± 0.17; p = 0.27). RNA seq of old MSCs, young MSCs, and old MSCs following co-culture with young MSCs revealed that the age-related differences were broadly modified by co-culture, with the most significant changes associated with lysosomal pathways. These results indicate that the age-associated decreased paracrine-mediated effects of old MSCs are improved following indirect co-culture with young MSC. The observed effect is associated with broad transcriptional modification, suggesting potential targets to both assess and improve the therapeutic potency of stem cells from older patients.

18.
Front Cardiovasc Med ; 9: 866146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811700

RESUMEN

Background: The relationship between inflammation and corrected QT (QTc) interval prolongation is currently not well defined in patients with COVID-19. Objective: This study aimed to assess the effect of marked interval changes in the inflammatory marker C-reactive protein (CRP) on QTc interval in patients hospitalized with COVID-19. Methods: In this retrospective cohort study of hospitalized adult patients admitted with COVID-19 infection, we identified 85 patients who had markedly elevated CRP levels and serial measurements of an ECG and CRP during the same admission. We compared mean QTc interval duration, and other clinical and ECG characteristics between times when CRP values were high and low. We performed mixed-effects linear regression analysis to identify associations between CRP levels and QTc interval in univariable and adjusted models. Results: Mean age was 58 ± 16 years, of which 39% were women, 41% were Black, and 25% were White. On average, the QTc interval calculated via the Bazett formula was 15 ms higher when the CRP values were "high" vs. "low" [447 ms (IQR 427-472 ms) and 432 ms (IQR 412-452 ms), respectively]. A 100 mg/L increase in CRP was associated with a 1.5 ms increase in QTc interval [ß coefficient 0.15, 95% CI (0.06-0.24). In a fully adjusted model for sociodemographic, ECG, and clinical factors, the association remained significant (ß coefficient 0.14, 95% CI 0.05-0.23). Conclusion: An interval QTc interval prolongation is observed with a marked elevation in CRP levels in patients with COVID-19.

19.
Front Cardiovasc Med ; 9: 1010748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684594

RESUMEN

Inherited Arrhythmia Syndromes (IAS) including long QT and Brugada Syndrome, are characterized by life-threatening arrhythmias in the absence of apparent structural heart disease and are caused by pathogenic variants in genes encoding cardiac ion channels or associated proteins. Studies of large pedigrees of families affected by IAS have demonstrated incomplete penetrance and variable expressivity. Biological sex is one of several factors that have been recognized to modulate disease severity in IAS. There is a growing body of evidence linking sex hormones to the susceptibility to arrhythmias, yet, many sex-specific disease aspects remain underrecognized as female sex and women with IAS are underinvestigated and findings from male-predominant cohorts are often generalized to both sexes with minimal to no consideration of relevant sex-associated differences in prevalence, disease manifestations and outcome. In this review, we highlight current knowledge of sex-related biological differences in normal cardiac electrophysiology and sex-associated factors that influence IAS phenotypes.

20.
JACC Case Rep ; 3(8): 1103-1107, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34471893

RESUMEN

We report a case series of 4 patients with transient marked QTc prolongation and ventricular arrhythmias in the setting of inflammation with very high ferritin levels. Three patients were positive for coronavirus disease-2019. In the setting of an acute rise in inflammatory markers, electrocardiography screening for QTc prolongation is warranted. (Level of Difficulty: Beginner.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...